

Florida Stormwater Association

Adaptive Nutrient Source Identification Programs March 9, 2023 10:30 a.m. – 11:30 a.m. (Eastern)

www.florida-stormwater.org

APPLIED SCIENCES

Civil Engineering Watershed Planning Urban Design Resiliency Strategies

OneWaterFL.com

Florida Stormwater Association

Craig Duxbury Senior Environmental Scientist WSP USA Environment & Infrastructure Inc. craig.duxbury@wsp.com wsp

Nutrient Source Tracking

Craig Duxbury Senior Environmental Scientist WSP USA Environment & Infrastructure Inc.

wsp

Nutrient Source Tracking (NST) Overview

- Introduction
- Background
- Sampling for NST
- Challenges & Limitations

Introduction

Water full of algae laps along the Sewell's Point shore on the St. Lucie River under an Ocean Boulevard bridge in Martin County. [Richard Graulich [The Palm Beach Post via the Associated Press (2016)]

- Nutrient Loading to Waterbodies
- Nitrogen and Phosphorus
- Harmful algae blooms
- Impacts to biodiversity, recreation, and property value
- How do we identify these sources of nutrients?

wsp

Where are nutrients coming from?

Sources of Nutrients

Nutrient Source Tracking

- Wastewater
- Stormwater
- Agriculture
- Atmospheric Deposition

Nutrient Source Tracking Approaches

-Land use/runoff models

Source: MACTEC Created by: SAR

Checked by: WAT

Prepared for:

St. Johns River Water JUR **Management District** 4049 Reid Street Palatka, Florida 32177

and

Environmental Protection 2600 Blair Stone Road Tallahassee, FL 32399

Prepared by: **MACTEC**

404 SW 140th Terrace Newberry, FL 32669

MACTEC Project No.: 6063060079

March 2007

Nutrient Source Tracking Approaches

-Chemical Signatures

Chemical Beverage Signatures Allow Geographical Tracking of People By What They've Been Drinking

Your beer can tell you where you've been, according to a new study by researchers in Utah. No, not because...

BY REBECCA BOYLE | PUBLISHED JUN 30, 2010 10:13 PM EDT

How do we detect and differentiate nutrients?

Nutrients

- Nitrogen species
- Phosphorus fractionations
 Microbial Source Tracking
 Anthropogenic Tracers
- Sweeteners
- Antibiotics
- Fragrance molecules
 Indicators of wastewater
 Stable Isotopes

Nitrogen and Phosphorus

Nutrient Measurements

- Phosphorus: proportion of dissolved P can provide an indication of the source
- Nitrogen: proportion of species can provide an indication of the source:
 - Nitrate + Nitrite—associated with fertilizer and human wastes
 - Ammonia-N—associated with organic pollution
 - Organic N---associated with wetlands

Microbial Source Tracking

Not a nutrient, but an indicator of nutrients

Water Research Volume 41, Issue 16, August 2007, Pages 3747-3757

Confirmation of putative stormwater impact on water quality at a Florida beach by microbial source tracking methods and structure of indicator organism populations

M.J. Brownell ^a, V.J. Harwood ^a of R.C. Kurz ^b, S.M. McQuaig ^a, J. Lukasik ^c, T.M. Scott ^c

Chemical Indicators

Chemical Indicators

- Antibiotics and pharmaceuticals
- Anthropogenic tracers
 - Sucralose and other sweeteners
 - Caffeine
- Wastewater indicators
 - Bromide
 - Chloride
- Isotopes
 - Phosphorus
 - Bromide
 - Nitrate

Chem	ical CASRN ¹	Reporting level, in µg/kg		
Antibi	iotics and pharmaceuticals analyzed at USGS OGRL	als analyzed at USGS OGRL		
Azithromycin	117772-70-0	1		
Carbamazepine	298-46-4	1		
Chloramphenicol	56-75-7	1		
Chlorotetracycline	64-72-2	1		
Ciprofloxacin	85721-33-1	1		
Doxycycline	564-25-0	1		
Enrofloxacin	93106-60-6	I		
Epichlorotetracycline	-	1		
Epiisochlorotetracycline	-	1		
Epioxytetracycline		1		
Epitetracycline	79-85-6	I		
Erythromycin	114-07-8	1		
Erythromycin-H2O	23893-13-2	1		
Ibuprofen	15687-27-1	50		
Isochlorotetracycline	514-53-4	I		
Lincomycin	154-21-2	1		
Lomefloxacin	98079-51-7	1		
Norfloxacin	70458-96-7	1		
Ofloxacin	82419-36-1	I		
Ormetoprim	6981-18-6	1		
Oxytetracycline	6153-64-6	1		
Roxithromycin	80214-83-1	1		
Sarafloxacin	98105-99-8	1		
Sulfachloropyridazine	80-32-0	1		
Sulfadiazine	68-35-9	1		
Sulfadimethoxine	122-11-2	1		
Sulfamethazine	57-68-1	1		
Sulfamethoxazole	723-46-6	1		
Sulfathiazole	72-14-0	- 1		
Tetracycline	60-54-8	1		
Total chlorotetracycline	-	1		
Total erythromycin		1		
Total oxytetracycline	-	1		
Total tetracycline		- 1		
Trimethoprim	738-70-5	1		
Tylosin	1401-69-0	1		
Virginiamycin	11006-76-1	5		

Elliot et al 2018

Chaminal	Departing lough	Sar	nple concentration,	in micrograms per ki	logram	
Chemical	Reporting level.	Soil site 1	Soil site 2	Soil site 3	Soil site 4	4
	Was	stewater indicato	rs			
Sample weight (grams)	na	9.9	10	10	10	
p-Cresol	250	50	40	40	nr	
4-tert-Octylphenol	50	<50	<50	6	<50	
BDE congener 47	50	<50	<50	3	<50	
Tributyl phosphate	50	<50	10	<50	<50	
3-Methyl-1H-indole	50	7	10	5	4	
Acetyl hexamethyl tetrahydronaphthalene	50	<50	<50	11	2	
Indole	100	60	110	90	70	
Isophorone	50	<50	<50	11	6	
Carbazole	50	<50	12	6	4	
9,10-Anthraquinone	50	<50	10	7	.5	
Acetophenone	150	nr	nr	120	nr	
2,6-Dimethylnaphthalene	50	<50	<50	<50	1	
Benzo[a]pyrene	50	16	48	14	20	
Fluoranthene	50	26	65	<50	<50	
Pyrene	50	21	59	20	29	
Triclosan	50	<50	nr	17	6	
Bisphenol A ²	50	<50	13	nr	nr	
3β-Coprostanol ²	500	1,140	1,470	nr	nr	
β-Sitosterol	500	1,550	1,300	<500	<500	
	Hormones	, sterols, and bisp	henol A			
Sample weight (grams)	na	4.99	4.83	4.97	4.98	
4-Androstene-3,17-dione	0.1	3.65	1.31	0.59	<0.43	
cis-Androsterone	0.25	3.08	1.72	1.13	0.62	
Dihydrotestosterone	0.1	3.9	1.82	1.13	0.9	
Estrone	0.1	<0.36	<0.34	<0.20	0.21	
Progesterone	0.5	<1.05	<1,45	0.91	<1.01	
Bisphenol A ²	10	E 35	E 27.7	E 10.9	E 36.3	
3β-Coprostanol ²	50	E 1,850	E 2,460	E 1,655	1,352	
Cholesterol	50	702	E 1,031	731	326	
	Antibioti	cs and pharmace	uticals			
Sample weight (grams)	na	1	1	1	- (1)	
Carbamazepine	1.0	1.4	4.3	6.3	3.9	
Norfloxacin	1.0	<1	10	24	<1	
Ciprofloxacin	1.0	380	>1,000	>1,000	540	
Ofloxacin	1.0	400	>1,000	>1,000	310	
Epitetracycline	1.0	<1	3.1	5.7	1.8	
Tetracycline	1.0	<1	3.3	6.6	2.2	
Azithromycin	1.0	<1	180	540	<1	

Elliot et al 2018

Chemical Indicators

Source: OCEPD, 2022

Anthropogenic Tracers

wsp

SUCRALOSE

- Artificial sweetener
- Half Life of ~1 year

Reuse systems: 18,000 – 79,000 ng L⁻¹ Septic Tanks: 12,000 – 80,000 ng L⁻¹ FL surface water: 0 – 27,000 ng L⁻¹ FL unconfined aquifers: 0 – 3,700 ng L⁻¹ (Silvanima et al. 2018)

Sucralose

- Sucralose molecule is resistant to wastewater treatment processes (Torres et al., 2011)
- Found in areas influenced by septic (Herren et al., 2021)
- Commonly found in US waters (Bernot et al., 2016)
- Can be used to differentiate sources of anthropogenic loadings to impaired waters (Oppenheimer et al., 2012)

Occurrence and suitability of sucralose as an indicator compound of wastewater loading to surface waters in urbanized regions

Joan Oppenheimer ^{a,*}, Andrew Eaton ^b, Mohammad Badruzzaman ^a, Ali W. Haghani ^b, Joseph G. Jacangelo ^{a,c}

^a MWH Americas Inc., 618 Michillinda Avenue, Arcadia, CA 91007, USA ^b MWH Laboratories, 750 Royal Oaks Avenue, Monrovia, CA 91016, USA ^c The Johns Hopkins University, Baltimore, MD 21205, USA

Gadolinium anomaly/sucrose ratio (Oppenheimer et al 2014, Bertolotti et al 2014)

 WATER ELSEARCH 45 (2012) 5904-5916

 Available online at www.sciencedirect.com

 SciVerse ScienceDirect

 Journal homepage: www.elsevier.com/locate/watres

Differentiating sources of anthropogenic loading to impaired water bodies utilizing ratios of sucralose and other microconstituents

Joan A. Oppenheimer^{a,*}, Mohammad Badruzzaman^a, Joseph G. Jacangelo^{b,c}

^aMWH, 618 Michillinda Avenue, Suite 200, Arcadia, CA 91007, USA

^b The Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, USA ^c MWH, 40814 Stoneburner Mill Lane, Lovettsville, VA 20180, USA

¹Unreliable zone is the region where sucralose is <3,000 ng/L and the Gd anomaly concentrations are too low to provide a meaningful ratio.

lsotopes

δ^{11} Boron Isotopes

NSD

Modified after Ransom et al. 2016

From: Canion et al 2020, UF Water Symposium

Stable Isotopes of Nitrate

Definition: δ^{15} N and δ^{18} O isotopes of nitrate

Reported as: Ratios of δ^{14} N to δ^{15} N and δ^{18} O to δ^{16} O relative to standard ratios

δ^{15} N vs δ^{18} O Isotope Biplots

- "Gold Standard" for nitrate source identification
- Extensive published research using this relationship to infer sources
- Clearer results in areas with single (high concentration) nitrate sources

Fig. 7. Scatterplot of δ^{18} N-NO₃⁻ and δ^{18} O-NO₃⁻ for groundwater in the QRB. The δ^{15} N-NO₃⁻ and δ^{18} O-NO₃⁻ values of the sources (NP: NO₃⁻ fertilizer; AP: NH⁺₄ fertilizer; AP: atmospheric NO₃⁻; SON: soil organic nitrogen; M&S: manure and zewage) were summarized by (Kendall and McDonnell, 1998).

Isotopes in Environmental and Health Studies Vol. 43, No. 3, September 2007, 237–247

Taylor & Francis Taylor & Francis Group

	-	Fertilizer type	Manufacturer	$\delta^{15}N(\%)_{air}$
Fertilizer nitrogen isotope signatures	Synthetic	(NH ₄) ₂ SO ₄	W.L Dingley	0.8
ALISON S. BATEMAN† and SIMON D. KELLY*†:		(NH ₄) ₂ SO ₄	Gem	6.6
School of Environmental Sciences University of East Apelia Norwich NR4 7T1 UK		$(NH_4)_2SO_4$	Terra	-1.2
Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK		(NH ₄) ₂ SO ₄	Bunn	0.7
(Received 12 March 2007: in final form 30 May 2007)		KNO3	W.L. Dingley	-1.5
		KNO3	Gem	-1.1
		KNO3	Yara	-1.0
		Urea	Gem	-2.4
		Urea	Unknown	-1.1
		Urea	Bunn	-0.8
		Urea	W.L Dingley	-1.6
		Urea	Yara	-5.9
		NH4NO3	Unknown	2.6
		NH4NO3	Bunn	0.5
		NH4NO3	Kemira	2.2
		NH ₄ NO ₃	Terra	-1.3
		NH4NO3	Yara	-1.4
		NH4NO3	Unknown	-0.9
		$(NH_4)H_2PO_4$	Gem	-0.9
		$(NH_4)H_2PO_4$	Terra	-0.3
		NPK 20-10-10	Kemira	1.9
		NP 27-10	Kemira	0.8
		NPK 28-5-5	Kemira	- 1.1
		$Ca(NO_3)_2$	Yara	-0.3
		NPK 16-16-16	Yara	-0.6
		NPK 21-8-11	Yara	-0.7
		NPK 12-12-12	Unknown	0.4
		Hydroponic solution NH4NO3 and Ca(NO3)2	Unknown	0.2
		Hydroponic solution KNO3 and Ca(NO3)2	Unknown	0.7

The fertilizer manufacturer is shown where known.

Stable Isotopes of Nitrate—Biplot—Many samples land in the "mud zone"

Kendall et al 2015, modified from Kendall et al 2018

Pattern?

How do we increase our confidence in source differentiation?

Isotopes in Environmental and Health Studies Vol. 43, No. 3, September 2007, 237–247

Fertilizer nitrogen isotope signatures

ALISON S. BATEMAN† and SIMON D. KELLY*†‡

†School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK ‡Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK

(Received 12 March 2007; in final form 30 May 2007)

Bayesian Mixing Models

General trophic positions and approximate bulk delta nitrogen isotopes ratios for organisms in the Pacific Ocean. Source: <u>http://www.spc.int/oceanfish/en/ofpsection/ema/biological-</u> <u>research/trophic-dynamic-sampling</u>

Bayesian Statistics

Probability based on **prior** knowledge of an event

Source: Wikipedia

Bayesian Mixing Models

PLOS ONE

🔓 OPEN ACCESS 💋 PEER-REVIEWED

RESEARCH ARTICLE

Source Partitioning Using Stable Isotopes: Coping with Too Much Variation

Andrew C. Parnell, Richard Inger, Stuart Bearhop, Andrew L. Jackson 🖾

Published: March 12, 2010 • https://doi.org/10.1371/journal.pone.0009672

Stable Isotope Mixing Models in R with simmr

Andrew Parnell and Richard Inger

2021-02-27

Examples of *simmr* Bayesian Model Outputs

Nitrogen Sources in Springsheds

NF: nitrate fertilizer;, M&S: manure and sewage; SN: soil nitrogen; AP: atmospheric precipitation; AF: ammonium fertilizer (Zhang et al., 2022)

WSP, 2022

Stormwater?

Sources and concentrations of nutrients in surface runoff from waterfront homes with different landscape practices

Lisa S. Krimsky^{a,*}, Mary G. Lusk^b, Holly Abeels^c, Linda Seals^{c,1}

^a University of Florida/Institute of Food and Agricultural Sciences, Indian River Research and Education Center, 2199 South Rock Road, Fort Pierce, FL 34945, United States
^b University of Florida/Institute of Food and Agricultural Sciences, Gulf Coast Research and Education Center, 14625 Co Rd 672, Wimauma, FL 33598, United States
^c University of Florida/Institute of Food and Agricultural Sciences, Brevard County, 3695 Lake Drive, Cocoa, FL 32926, United States

Nitrate source	Seasonal comparison		Landscape comparisor	
	Dry season	Wet season	FFL	Conventiona
Atmospheric deposition	15	30.6	30,4	15.7
NH ₄ ⁺ -fertilizer	15.8	7.7	10.6	12.4
NO ₃ -fertilizer	28.6	23.1	20,8	27.0
Soil and organic N	37.5	36.5	34.5	36.8
Manure/sewage	3.2	3.1	3.8	8.1

MixSIAR Model

Stormwater?

$\delta^{\rm 15}{\rm N}$ and $\delta^{\rm 18}{\rm O}$ Reveal the Sources of Nitrate-Nitrogen in Urban Residential Stormwater Runoff

Article

pubs.acs.org/est

Yun-Ya Yang and Gurpal S. Toor*

Soil and Water Quality Laboratory, Gulf Coast Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 14625 CR 672, Wimauma, Florida 33598, United States

Phosphorus Isotopes

wsp

Methods (From: Musser, 2020)

- Extraction
 - Water— centrifuge to obtain a colloidal sample
 - Two step centrifuge
 - Soils or sediments—freeze dried, homogenized, sieved
 - Sequential P-extraction of solid material
- Precipitation
 - Concentrate P using a silver phosphate precipitation method
- Measure in Elemental Analyzer

Results (Musser, 2020)

Appears that farm soils more depleted in P isotope, but more enriched in C and N isotopes

Figure 19. Phosphate-oxygen vs. nitrogen (left) and carbon (right) isotopic compositions of two different soil land use types from Murderkill watershed: residential (red circles) and farm (green circles).

Figure 20. Phosphate-oxygen isotopic values of soil (farm in green text and residential in red text) plotted in their Murderkill watershed location.

Agriculture vs Forest (Li et al, 2021)

vsp

Science of The Total Environment Volume 574, 1 January 2017, Pages 680-690

The oxygen isotopic composition of phosphate in river water and its potential sources in the Upper River Taw catchment, UK

Steven J. Granger^a 2 🔯, <u>Tim H.E. Heaton^b</u>, <u>Verena Pfahler^a</u>, <u>Martin S.A. Blackwell^a</u>, <u>Huimin Yuan^c</u>, <u>Adrian L. Collins^a</u>

- High degree of overlap among the sources
- Microbial activities can alter the isotopic ratio
- Not recommended
- (Granger et al, 2017)

Fig. 3. Summary of $\delta^{18}O_{PO4}$ values for various PO₄ sources within the Upper Taw catchment and the values measured within the river itself. All values are for water soluble/extractable TRP except for the River Channel Bed Sediment which is a 1 M HCL extraction. Range of $E\delta^{18}O_{PO4}$ for the river is indicated by the grey area.

Phosphorus Isotopes

Summary

- Some promise for differentiating sources
- Specialized, and relatively complex analytical procedure
- Rapid microbial cycling can alter PO₄ isotopic ratios.
- Appears to be inappropriate for systems with rapid microbial cycling of PO₄
- Likely not practical

Challenges and Limitations

Biogeochemical Transformations

48

Overlap of Sources

Legacy Sources

Multiple Sources

Challenges for differentiation

- Overlap among sources
- Biogeochemical transformations
- Legacy nutrient inputs
- Costs
- Collection
- Analytical processing

Practical Considerations

Sampling and Analyses

Sample design

• Minimize other potential sources

Collecting samples

- Minimize interference
- Stormwater vs groundwater

Laboratory selection

- Different detection limits, and preservation lsotopes:
- Different methods, conduct split sampling if a new lab

Groundwater seepage into lakes

Groundwater Flux In Lakes

- Groundwater flux into lake is typically highest at the edges of lakes
- Nitrate concentrations have to be high enough;
 lab dependent generally >1 to > 3 mg/L nitrate-N
- Challenging: alligators, volume limitations, nitrate limitations, matrix interference, biogeochemical reactions
- Limit of detection issues with sucralose

Summary

Summary

Best Practices

- Develop a sampling plan based on your primary questions
- Select sampling sites based on minimizing potential confounding influences
- Use multiple lines of evidence approach

Evidence of Nutrients

- Examine species of nitrogen and phosphorus
- Boron isotopes appear to be of limited use in Florida
- Sucralose appears to be a robust indicator of human wastewater
- Stable isotopes of N, combined with Bayesian modeling can be used to differentiate sources, but frequently overlap among the sources
- Stable isotopes analyses can be used in groundwater, lake seepage, and surface water

wsp.com