Improving Water Quality with Green Infrastructure and Low Impact Development

> Florida Stormwater Association Winter Conference 2019



Mark Ellard, PE, CFM, D.WRE, ENV SP December 4, 2019

#### 

#### **Benefits of GI / LID**



Focus on **stormwater** as a resource

#### **Challenges of GI / LID**

- Effective integration with traditional practices
- Lack of familiarity of local contractors
- Lack of familiarity by City / County engineers
- Lack of familiarity by regional permitting authorities
- Lack of experience with maintenance procedures
- Demonstrating benefit
- Incentivizing



#### Geosyntec<sup>D</sup> consultants

#### **Orange County LID Manual project:**

#### **LID Manual**

- 7 LID practices
- Practices suitable for greenfield type urban development

#### LID concept plans comparison •

- Traditional vs. LID site design
- Comparison of costs and maintenance requirements

#### LID maintenance cost projections ٠

- Annual maintenance costs for each of the LID practices

- 10-year maintenance cost projections

- Stormwater master planning
  - Mostly closed basins/good soils













#### 

#### **GI / LID Practices:**

- Pervious pavement
- Bioretention Areas/ Bioswales
- Rain Gardens
- Planter Box
- Tree Box Filters
- Curb Cuts & Inverted Medians
- Stormwater Harvesting / Cisterns













#### **Cost Impacts:**

- Capital Costs
  - Reduced infrastructure ( $\downarrow$ )
  - Potentially smaller ponds  $(\downarrow)$
  - More vegetation/plantings (<sup>†</sup>)
  - Contractor certifications (<sup>†</sup>)
- **Maintenance Costs** 
  - Training/certifications for personnel (<sup>↑</sup>)
  - Replace typical landscaping offset overall BMP maintenance area (↓)
  - Infiltration/media testing (<sup>†</sup>)



#### **Concept Plans Comparison**

- Purpose
  - Show LID techniques can accommodate equivalent density/intensity development as traditional methods
  - Provide alternatives to structural stormwater facilities
  - Provide additional opportunities for infiltration
  - Illustrate that water quality, water quantity, and nutrient loading criteria can be met or exceeded using LID practices

#### • Project Site (29.09 acres): portion of Hamlin PD

- Commercial: Grocery store 54,000 sq. ft.
  - Bank (Outparcel) 4,500 sq. ft.
  - Retail 4,500 sq. ft.
- Residential: 168 MF units (7 buildings at 24 units/building)





Geosyntec<sup>></sup>

consultants







#### **Comparison Results**

- The LID Concept provides the same commercial and residential sq. ft. and parking
- LID Utilizes 25.31 acres of the original 29.09 acres a reduction of 3.78 acres (13%).
- The LID concept plan meets or exceeds the Traditional concept plan in all stormwater

management criteria.

| Table 1: Comparison of Traditional and LID Results |                                                                                                |  |  |  |  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|
| Traditional                                        | LID                                                                                            |  |  |  |  |
| 4.40 ac-ft                                         | 5.83 ac-ft                                                                                     |  |  |  |  |
| 17.7 ac-ft                                         | 11.7 ac-ft                                                                                     |  |  |  |  |
| 8.46 cfs                                           | 8.05 cfs                                                                                       |  |  |  |  |
| 95.95%                                             | 96.69%                                                                                         |  |  |  |  |
| 1.19 kg/yr                                         | 0.86 kg/yr                                                                                     |  |  |  |  |
|                                                    | aditional and I<br>Traditional<br>4.40 ac-ft<br>17.7 ac-ft<br>8.46 cfs<br>95.95%<br>1.19 kg/yr |  |  |  |  |

(1): Treatment Volume is controlled by the retention depth needed for nutrient removal
(2): Total Inflow volume for the 25yr/24hr (Orange) storm event to Ponds 100/100L and 200/200L
(3): Peak Discharge to Lk Hancock for the 25yr/24hr (Orange) storm event







| Pay Item                  | LID Cost      | Traditional Cost | LID Description                                    | Traditional Description                               |
|---------------------------|---------------|------------------|----------------------------------------------------|-------------------------------------------------------|
| Pavement                  | \$ 741,323.67 | \$ 586,532.87    | Pervious Pavement, Pervious Asphalt,<br>and Pavers | Asphalt and Concrete Sidewalk                         |
| Bioretention Swale        | \$ 645,387.05 | \$ 290,941.07    | Bioretention Swale                                 | Landscaping                                           |
| Raingarden                | \$ 408,062.24 | \$ 104,400.34    | Raingarden                                         | Landscaping                                           |
| Planter Box               | \$ 47,296.75  | \$ 9,645.40      | Planter Box                                        | Landscaping                                           |
| Tree Box Filter           | \$ 128,730.00 | \$ 6,307.27      | Tree Box Filter                                    | Landscaping                                           |
| Curbing and Medians       | \$ 86,326.45  | \$ 86,886.83     | Valley Gutter, Type D curb, and<br>Pavement        | Type D Curb and Pavement                              |
| Stormwater<br>Harvesting  | \$ 212,621.14 | N/A              | Stormwater Harvesting                              |                                                       |
| Primary Storm System      | \$ 398,769.82 | \$ 818,139.65    | Two Dry Retention Ponds                            | Two Dry Retention Ponds and One Wet Detention<br>Pond |
| Secondary Storm<br>System | \$ 354,529.42 | \$ 644,946.81    | 36-inch Pipe, Manhole, DBI C, 36-Inch<br>MES       | 12-inch & 36-inch Pipe, DBI C, 36-Inch MES            |
| Undeveloped Land          | N/A           | \$ 849,000.00    |                                                    | \$200k/acre multi-family; \$250k/ acre retail         |
| Totals:                   | \$ 3,023,047  | \$ 3,396,800     |                                                    | _                                                     |
|                           |               |                  | ~12% Costs Savings                                 |                                                       |



#### **Maintenance Costs Projections**

- Project maintenance costs for each of the LID practices:
  - frequency
  - inspection activity
  - maintenance activity
  - labor/equipment/materials
  - costs of similar traditional stormwater management activities
- Compare example project data
- Compare to national data



Geosyntec<sup>D</sup>

consultant





| <u> </u>                                                                                       | Design Pervious Pavement Area (sf): 20000 Area of the Design pervious pavement |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                           | at practice. The Size Factor in the table below is applied to this area to against the annual               |                             |                           | al cost.                           | , cost,                          |                         |                             |                                          |                             |                           |                                    |                                  |                 |                             |                                                                                                                                                                    |                                                                |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|------------------------------------|----------------------------------|-------------------------|-----------------------------|------------------------------------------|-----------------------------|---------------------------|------------------------------------|----------------------------------|-----------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|                                                                                                |                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                           |                                                                                                             | C                           | osts per (                | Maintenance<br>Occurrence (A       | Costs for Perv                   | ious Pave               | ment                        | 1                                        | 0                           | l<br>osts per             | daintenance (                      | osts for Conver<br>Average)      | itional Pav     | ement                       | -                                                                                                                                                                  |                                                                |
| Maintenance<br>Activity                                                                        | Projected<br>Frequency <sup>2</sup>                                            | Inspection Activity <sup>2</sup>                                                                                                                                        | Maintenance Activity Description <sup>2</sup>                                                                                                                                                                                                                                             | Labor / Equipment / Materials<br>Required                                                                   | Labor<br>Hours <sup>3</sup> | Cost /<br>Hr <sup>+</sup> | Material<br>Allowance <sup>4</sup> | Total Cost<br>Per<br>Occurrence: | Base<br>Annual<br>Cost: | Size<br>Factor <sup>5</sup> | Adjusted <sup>6</sup><br>Annual<br>Cost: | Labor<br>Hours <sup>3</sup> | Cost /<br>Hr <sup>4</sup> | Material<br>Allowance <sup>4</sup> | Total Cost<br>Per<br>Occurrence: | Annual<br>Cost: | Size<br>Factor <sup>5</sup> | Adjusted <sup>®</sup><br>Annual<br>Cost:                                                                                                                           | Notes                                                          |
| Monthly Trash<br>and Debris<br>Removal                                                         | Monthly<br>(12 times a year)                                                   | Inspect area for trash and debri<br>accumulations                                                                                                                       | Remove trash and debris from<br>pavement area.                                                                                                                                                                                                                                            | Laborer with brooms, dust pans, and garbage bags.                                                           | 0.5                         | \$40                      | \$5                                | \$25                             | \$300                   | 0.20                        | \$300                                    | 0.5                         | \$40                      | \$5                                | \$25                             | \$300           | 0.20                        | \$300                                                                                                                                                              | Considered similar<br>"Trash / Litter Pick<br>and Removal" wor |
| 3 times per year<br>(Two times per<br>per with<br>laspection,<br>dlowance for om<br>additional | Inspect pavement for ponding water                                             | Monitor these areas to determine if<br>surface inflitration rates have been<br>compromised. If so, vacuum area wit<br>street sweeper to reduce the risk of<br>clogging. | Inspector to perform visual inspection.                                                                                                                                                                                                                                                   | 0.25                                                                                                        | \$60                        | \$0                       | \$15                               | \$45                             | 0.05                    | \$45                        | N/A                                      | N/A                         | NZA                       | N/A                                | NZA                              | N/A             | N/A                         |                                                                                                                                                                    |                                                                |
|                                                                                                | inspect pavement for<br>accumulated sediment                                   | Remove accumulated sediment by<br>vacuuming with street sweeper if<br>necessary. Identify source of sedimen<br>and repair area                                          | Inspector to perform visual inspection.                                                                                                                                                                                                                                                   | 0.25                                                                                                        | \$60                        | <b>.</b> \$0              | \$15                               | \$45                             | 0.05                    | \$45                        | N/A                                      | N/A                         | N/A                       | N/A                                | NZA                              | N/A             | N/A                         | The hours estimate<br>each task assume to<br>the tasks would oc<br>part of regular<br>maintenance at mu                                                            |                                                                |
| Restoration                                                                                    | occurrence after :<br>major storm.)                                            | Inspect outlets                                                                                                                                                         | Remove accumulated sediment from<br>outlet and repair areas of erosion                                                                                                                                                                                                                    | Laborer with hand tools. Rubble rip ray<br>or gravel to repair erosion area.                                | 0.25                        | \$40                      | \$25                               | \$35                             | \$105                   | 0.05                        | \$105                                    | N/A                         | N/A                       | N/A                                | N/A                              | N/A             | N/A                         | NZA                                                                                                                                                                | pervious / convention<br>pavement areas.                       |
|                                                                                                | Inspect adjacent areas for erosion                                             | Stabilize bare areas                                                                                                                                                    | Laborer with hand tools. Cover bare areas with sod or gravel as needed.                                                                                                                                                                                                                   | 0.25                                                                                                        | \$40                        | \$25                      | \$35                               | \$105                            | 0.10                    | \$105                       | 0.25                                     | \$40                        | \$25                      | \$35                               | \$105                            | 0.10            | \$105                       |                                                                                                                                                                    |                                                                |
|                                                                                                | 1.1                                                                            | Inspect for vegetation growth within pervious pavement                                                                                                                  | Kill vegetation within pervious pavement area                                                                                                                                                                                                                                             | Laborer with herbicide and hackpack sprayer.                                                                | 0.5                         | \$40                      | \$15                               | \$35                             | \$105                   | 0.50                        | \$105                                    | 0.5                         | \$40                      | \$15                               | \$35                             | \$105           | 0.50                        | 50 \$105                                                                                                                                                           |                                                                |
| Annual Once per year<br>nspection and [prior to wet<br>Maintenance season] (                   | Conduct surface vacuuming wit<br>street sweeper                                | Vacuum with street sweeper pervious<br>pavement and surrounding<br>contributing pavement.                                                                               | Subcontractor capable of vacuuming, the parking lot with street sweeper. <sup>2</sup>                                                                                                                                                                                                     | 0.5                                                                                                         | \$95                        | \$0                       | \$48                               | \$48                             | 0.05                    | \$48                        | 0.5                                      | <b>%95</b>                  | 30                        | \$48                               | \$48                             | 0.05            | \$48                        | This actionate across                                                                                                                                              |                                                                |
|                                                                                                | Conduct infiltration testing                                                   | Using ERIK procedures, determine th<br>infiltration rate through the pervious<br>pavemen: is at least 2.0 inches per<br>hour.                                           | Subcontractor or County staff qualified<br>to perform test. Testing supplies. This<br>test is assumed to occur concurrent<br>with the semi-annual inspection for-<br>accumulated settlement. Contractor<br>should rehabilitate pawement by<br>vacuuming with street sweeper. <sup>8</sup> | т                                                                                                           | \$60                        | \$100                     | \$160                              | \$160                            | 0.05                    | \$160                       | N/A                                      | N/A                         | N/A                       | N/A                                | N/A                              | N/A             | N/A                         | This estimate assumed<br>that rehabilitation of the<br>pervious pavement is no<br>required annually, but<br>A would occur as part of a<br>major restoration effort |                                                                |
| Annual<br>Compliance<br>Report                                                                 | Anoually                                                                       | N/A                                                                                                                                                                     | N/A                                                                                                                                                                                                                                                                                       | Responsible Party to compile annual<br>summary of relevant inspection and<br>maintenance data. <sup>9</sup> | 4                           | \$75                      | \$0                                | \$300                            | \$300                   | 0.00                        | \$300                                    | 4                           | \$75                      | \$0                                | \$300                            | \$300           | 0.00                        | \$300                                                                                                                                                              |                                                                |
|                                                                                                |                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                           |                                                                                                             |                             |                           | Tota                               | l Annual Ma                      | aintenai                | nce Cost                    | \$1,213                                  | 1                           |                           | Tota                               | l Annual Ma                      | intenan         | ce Cost:                    | \$858                                                                                                                                                              |                                                                |



#### **Example 10-Year Maintenance Cost Projection**

| Inflation Rate:                                             |       | 3%    |       | User input i | inflation rate | e. The base | e rate of inflat | ion is 3%. |         |          |          |  |
|-------------------------------------------------------------|-------|-------|-------|--------------|----------------|-------------|------------------|------------|---------|----------|----------|--|
|                                                             |       | -     | _     |              | 1              | 'ear        |                  |            | 2       | . 1      |          |  |
| Maintenance Activity                                        | 1     | 2     | 3     | 4            | 5              | 6           | 7                | 8          | 9       | 10       | Totals   |  |
| Monthly Trash and Debris<br>Removal                         | \$300 | \$309 | \$318 | \$328        | \$338          | \$348       | \$358            | \$369      | \$380   | \$391    | \$3,439  |  |
| Triannual Minor<br>Inspection, Cleaning, and<br>Restoration | \$405 | \$417 | \$430 | \$443        | \$456          | \$470       | \$484            | \$498      | \$513   | \$528    | \$4,643  |  |
| Annual Inspection and<br>Maintenance                        | \$208 | \$214 | \$220 | \$227        | \$234          | \$241       | \$248            | \$255      | \$263   | \$271    | \$2,379  |  |
| Annual Compliance<br>Report                                 | \$300 | \$309 | \$318 | \$328        | \$338          | \$348       | \$358            | \$369      | \$380   | \$391    | \$3,439  |  |
|                                                             | ÷     |       |       |              |                |             | Total 10         | Year Ma    | intenan | ce Cost: | \$13,900 |  |
|                                                             |       |       |       | 10.0         | 1              |             |                  |            |         |          |          |  |





#### **Traditional vs. LID Example - Maintenance Cost Comparison**

| Maintenance Scenario                | Design Practice<br>Size | Estimated Annual Maintenance<br>(2013 Dollars) | Estimated 10-Year Maintenance<br>(3% inflation) |
|-------------------------------------|-------------------------|------------------------------------------------|-------------------------------------------------|
| Pervious Pavement                   | 36792 sf                | \$1,333                                        | \$15,278                                        |
| Bioretention                        | 73846 sf                | \$11,367                                       | \$130,311                                       |
| Rain Garden                         | 26498 sf                | \$5,877                                        | \$67,377                                        |
| Planter Box                         | 2448 sf                 | \$1,804                                        | \$20,684                                        |
| Tree Box Filter                     | 10 boxes                | \$1,586                                        | \$18,722                                        |
| Curb Cuts / Inverted Medians        | N/A                     | N/A                                            | N/A                                             |
| Stormwater Harvesting (w/ Cisterns) | 134528 gal              | \$9,120                                        | \$104,548                                       |
| Dry Retention Pond                  | 92522 sf                | \$11,303                                       | \$133,462                                       |
|                                     | Totals:                 | \$42,390                                       | \$490,382                                       |

| Maintenance Scenario | Design Practice Size | Estimated Annual Maintenance<br>(2013 Dollars) | Estimated 10-Year Maintenance<br>(3% inflation) |
|----------------------|----------------------|------------------------------------------------|-------------------------------------------------|
| Dry Retention Pond   | 132,675 sf           | \$15,880                                       | \$187,512                                       |
| Landscaped Area      | 30,546 sf            | \$5,889                                        | \$69,542                                        |
| Swale                | 73,843 sf            | \$8,779                                        | \$103,663                                       |
| Wet Detention Pond   | 63,319 sf            | \$4,451                                        | \$49,095                                        |
|                      | Totals:              | \$34,999                                       | \$409,812                                       |

~20% Costs Increase





#### **Traditional vs LID Example Take Home Points**

- With proper planning, significant cost savings may be achieved when considering land savings in new development scenarios
- LID approach may accommodate more water quality treatment in impaired waters basins
- LID approach may accommodate more infiltration in recharge areas
- Maintenance costs
  - May increase with LID practice applications
  - Focus on offset costs compared to traditional maintenance requirements
  - Enhanced water quality treatment offset may provide additional benefit
  - Long Term maintenance cost can be offset by up front capital savings



#### Promoting Green Infrastructure in Code

- Manual was created to promote an advanced stormwater management approach that is integrated with a revised land development code that incorporates a variety of green infrastructure or low impact development options to address stormwater quantity/quality standards as redevelopment occurs.
- The standards, herein, align with the State of Florida Environmental Resource Permit (ERP) and the administrative standards established by the Southwest Florida Water Management District (SWFWMD).
- The County, through its codes and policies, will allow design flexibility while establishing quantity/quality goals to ensure a sustainable future.
- Manual is designed in three distinct parts that each address the stages of the stormwater design process:
  - Introduction and Site Planning
  - Pinellas Stormwater Requirements
  - Best Management Practices Catalog



#### Land Development Code Article II: Drainage Requirements

Sec. 154-52. - Pinellas County Stormwater Manual.

The Pinellas County Stormwater Manual is intended to provide detailed drainage requirements and guidelines for the construction of physical improvements in the unincorporated limits of the county and on Pinellas County owned infrastructure in the incorporated limits of Pinellas County. However, to the extent this article conflicts with a municipal ordinance, the more stringent criteria shall be met. The Pinellas County Stormwater Manual shall be adopted by ordinance of the county commission and kept on file in the development review services and public works departments.



Geosyntec<sup>D</sup>

consultants

#### Green Infrastructure Siting Tools

- Develop a rating and suitability framework for siting GI as part of the new GI program
- End result to provide framework and toolset to evaluate water quality benefits and suitability to conceptualize and prioritize future GI projects
- Produce initial list of ranked GI projects
- Top ranked projects are conceptualized as proof of concept
- SOPs developed so COUNTY may easily replicate the results
- Establish standardized water quality benefit evaluation procedures



| Structural BMPs | Structural Stormwater BMPs              | Manual Section | Explicit Load<br>Reduction Credit |
|-----------------|-----------------------------------------|----------------|-----------------------------------|
| SW1             | Retention Basin                         | 6.1            | 4                                 |
| SW2             | Exfiltration Trench                     | 6.2            | V                                 |
| SW3             | Underground Storage and Retention       | 6.3            | Å                                 |
| SW4             | Treatment Swales                        | 6.4            | V                                 |
| SW5             | Vegetate Natural Buffers                | 6.5            | 4                                 |
| SW6             | Pervious Pavements                      | 6.6            | Ń                                 |
| SW7             | Green Roofs with Cisterns               | 6.7            | 1                                 |
| SW8             | Wet Detention Systems                   | 6.8            | V                                 |
| SW9             | Stormwater Harvesting/ Horizontal Wells | 6.9            | Å                                 |
| SW10            | Up-Flow Filter Systems                  | 6.10           | N                                 |
| 5W11            | Managed Aquatic Plant Systems           | 6.11           | ~                                 |
| SW12            | Biofiltration Systems/Tree Box Filters  | 6.12           | 4                                 |
| SW13            | Rain gardens                            | 6.13           | V                                 |
| SW14            | Rainwater Harvesting/Cisterns           | 6.14           | 1                                 |
| SC15            | Rainfall Interceptor Trees              | 6.15           | V                                 |







#### 

#### Bay Lake - Water Quality Retrofit

- Bay Lake Impaired for Nutrients
- Mixed land uses in contributing area
- 319 Grant for LID BMP Demonstration
- Modular Wetland Units with Filtration, Bioactivated Media, and Plant Uptake





### Bay Lake - Post-Improvement Stormwater Flow





#### **Bay Lake - Modular Wetlands**





#### Bay Lake - Monitoring Equipment





#### Bay Lake - Maintenance

- High sediment loading from ditch-inflow caused filter chamber to clog
- Maintenance crews contributed to clogging with grass clippings getting into system
- System undersized for specific application













#### Bay Lake - Maintenance





<u> (1)</u>

# Bay Lake - Results





|                            | Percent Removal              |                        |  |  |  |  |
|----------------------------|------------------------------|------------------------|--|--|--|--|
| Dovomotor                  | Modular                      | Wetland                |  |  |  |  |
| Falalletei                 | North<br>(Expanded<br>Slate) | South (Bold &<br>Gold) |  |  |  |  |
| Orthophosphorus            | 26.6%                        | 39.1%                  |  |  |  |  |
| Total Phosphorus           | 38.1%                        | 57.0%                  |  |  |  |  |
| Ammonia                    | 65.5%                        | 73.0%                  |  |  |  |  |
| Total Kjeldahl<br>Nitrogen | 44.3%                        | 54.9%                  |  |  |  |  |
| Nitrate / Nitrite          | 33.3%                        | -3.1%                  |  |  |  |  |
| Total Nitrogen             | 38.6%                        | 48.3%                  |  |  |  |  |
| Total Suspended<br>Solids  | 78.9%                        | 82.8%                  |  |  |  |  |



#### • Impacts of Future Climate Change

- Sea Level Rise
- Groundwater Table Rise
- Changes in Hydrology More Intense Storms







Geosyntec <

consultants

2 (B) (P

Existing and Forecasted Estimated Nuisance Flooding Conditions at St. Augustine's Maria Sanchez Lake based on FDEO's 2016 *Coastal Vulnerability Assessment* 



# Existing12" SLR (2030s)24" SLR (2040s)







# Increasing Tailwater (Tidal) Conditions

















Geosyntec<sup>></sup>

consultants

# Retention Pond / Bioretention / Rain Garden / Swale

**Ground Surface** 



Average Groundwater Table Rise May Inhibit Performance of BMPs Relying on Infiltration





# Exfiltration System / French Drains

**Ground Surface** 



Average Groundwater Table Rise May Inhibit Performance of BMPs Relying on Infiltration





# **Pervious Pavement Systems**

**Pavement Surface** 



Average Groundwater Table Rise May Inhibit Performance of BMPs Relying on Infiltration





#### **Traditional Stormwater Strategy**



**Receiving Water** 

Sensitive to Groundwater Table and Tailwater Elevation

> Centralized One Big Stormwater Facility for Attenuation and Treatment





![](_page_37_Picture_0.jpeg)

- Future GI/LID BMP Strategies
  - Design for Future Conditions
  - Adapt Design Criteria to Changing Hydrologic Conditions
  - Evaluate Current BMP
     Performance Conditions
  - Retrofit Existing BMPs
  - Consider Active Control
  - Adaptive Management

![](_page_38_Picture_9.jpeg)

![](_page_38_Picture_10.jpeg)

![](_page_38_Picture_11.jpeg)

# Good Design Intentions.....

![](_page_39_Picture_1.jpeg)

![](_page_39_Picture_2.jpeg)

![](_page_39_Picture_3.jpeg)

# Good Design Intentions.....

![](_page_40_Picture_1.jpeg)

![](_page_40_Picture_2.jpeg)

![](_page_40_Picture_3.jpeg)

![](_page_40_Picture_4.jpeg)

# Good Design Intentions.....

![](_page_41_Picture_2.jpeg)

![](_page_42_Picture_0.jpeg)

# Thamk You !

# Mark W. Ellard, PE, CFM, D.WRE, ENV SP

Senior Principal, Water Resources

#### **Geosyntec Consultants**

1511 East State Road 434, Suite 1005 Winter Springs, Florida 32708 Phone: 407-321-7030 WWW.geosyntec.com

![](_page_43_Picture_5.jpeg)

engineers | scientists | innovators

- Multi-Objective Improvement
  - Road Diet
  - Flood reduction
  - Storm sewer rehabilitation
  - Water utility replacement
  - Landscaping
  - Linear Park

#### • Opportunities !

- Water Quality
   Improvement
- Low Impact Design (LID) Features

![](_page_44_Picture_12.jpeg)

- Bioswales
- Rain Gardens
- Modular Wetland

![](_page_45_Figure_5.jpeg)

![](_page_45_Figure_6.jpeg)

TYPE 'C' INLET -

ABIOSWALE

A DETAIL

NONWOVEN

GEOTEXTILE

18" RIPRAP

GEOTEXTILE TO STRUCTURE WITH 1" CONCRETE ANCHORS

CONNECT NONWOVEN

AT 12" X 12" SPACING

RUBBLE (TYP)

CONCRETE FLUME

COMPACTED

![](_page_46_Picture_1.jpeg)

# Pre / Post Construction

![](_page_46_Picture_3.jpeg)

![](_page_46_Picture_4.jpeg)

![](_page_47_Picture_1.jpeg)

#### Rain Gardens / Bioswales fed through curb cuts

![](_page_47_Picture_3.jpeg)

![](_page_47_Picture_4.jpeg)

![](_page_48_Picture_1.jpeg)

#### Modular Planter Box

![](_page_48_Picture_3.jpeg)

![](_page_48_Picture_4.jpeg)

# **Stormwater Harvesting**

![](_page_49_Picture_1.jpeg)

### Proposed Project

- Design, install, and monitor stormwater harvesting demonstration project at Orange County Public Works Maintenance Yard
- System to collect stormwater from Building 6 roof
- 10,300 gallon underground reservoir (PIPE-R)
- Provide water for spray trucks and jetter trucks
- Real-time control management of storage (OPTI)
- Monitor system for water quantity and water quality for 1 year

![](_page_49_Picture_9.jpeg)

## **Stormwater Harvesting Site Layout**

![](_page_50_Picture_2.jpeg)

# Stormwater Harvesting System Description

- Main Components
  - Reservoir storage layer
    - Storage of harvested water
    - 10,300 gallons
  - Control box
    - Controls the water level in the reservoir layer
    - Will use real-time control technology (smart controls)
      - Hold on to water when it is needed
      - Release water when it is not needed (before rain event)
    - Location of pump
  - Drainfield overflow
    - Allows water to infiltrate prior to discharge to drainage infrastructure
    - Recharge the groundwater

![](_page_51_Picture_15.jpeg)

![](_page_51_Figure_16.jpeg)

![](_page_51_Picture_17.jpeg)

![](_page_51_Picture_18.jpeg)

## **Stormwater Harvesting Roof Drain Details**

![](_page_52_Figure_2.jpeg)

#### Stormwater Harvesting Plan View of Site Layout

![](_page_53_Figure_2.jpeg)

### **Stormwater Harvesting Installation**

![](_page_54_Picture_2.jpeg)

![](_page_54_Picture_3.jpeg)

## Stormwater Harvesting County Benefits

#### • Based on modeling results of this system the following benefits can be expected

- Reduce potable water use by estimated 70,000 gallons per year
  - Makes the County more sustainable
  - Cost savings
- Reduce stormwater leaving site by estimated 83% on an average annual basis
  - Reduce pressure on downstream drainage infrastructure
  - Improve water quality by reducing mass of pollutants discharged to surface water bodies
- Increase groundwater recharge by estimated 46,000 gallons per year
- Gives County experience with new, state-of-the-art technology (real-time controls) and new stormwater practice (harvesting)
- Demonstrate benefits of real-time control stormwater management strategy

![](_page_55_Picture_11.jpeg)

Geosyntec<sup>></sup>