wood.

Florida Stormwater Association December 5, 2019

Measuring Internal Nutrient Loads and Effective Treatment Options

Mary Szafraniec, PhD, PWS

woodplc.com

Why do we care about sediment quality?

- 1) Provides substrate for habitat
- 2) Can be a source or sink for pollutants
- 3) Drives water quality

• • •

Water Quality Degradation – Sediment Quality

- Internal nutrient release from sediment = **FLUX**
- Flux rates driven by concentration gradient
 - Transfer of dissolved nutrients from sediment (high concentration) to water column (low concentration)

The Problem

- Inputs from various external sources
- Basis for organic sediment deposition and accumulation = **LEGACY**

The Problem

- Sustains biologically available nutrient load
- Main cause for internal cycling and algal proliferation
- Not always considered or accounted for in nutrient budgets

P h o s p h o r u s

Sediment Nutrient Flux

- Diffusive nutrient release from sediment to water column
- Legacy organic accumulation
- Recent and ongoing inputs
- High potential for biologically available nutrients
- Occurs in high muck/nutrient enriched sediment
- Controlled by environmental conditions

Sediment Nutrient Flux

<u>Modeled</u>

 Regionally-specific predictive models developed by Wood to predict pre and post dredging net flux rates and loads

<u>Measured</u>

- Wood Flux Field and Lab SOP (approved by FDEP) to measure site-specific flux and internal nutrient loads
- Assess various treatment alternatives

Assessing Sediment Treatment Alternatives

- Evaluate effectiveness of various treatment alternatives
 - Physical or chemical cap
 - Reduction of flux rate
- Conduct cost-efficiency analysis for treatment alternatives

Methods

- Field Collection
 - In-situ water quality profile
 - Muck thickness
 - Intact sediment cores
- Laboratory Analyses
 - Pre-screen: sediment physical and chemical content
 - P Fractionation (Sequential extractions) BAP
 - Intact sediment core flux lab incubations

Methods

Considerations for Flux Setup

- Depth of water and sediment profiles
- Time for settling and equilibration process after resuspension
- Frequency and timing of data points
- Length of incubation
- Aerobic, anoxic, quiescent and/or turbulent conditions
- Temperature control
- Sand content

Methods

Sediment capping/treatment alternatives

- Phoslock[®] Full Strength Dose
- Alum Full Strength Dose
- "Floc&Lock" (Phoslock[®] and Alum)
- Clean sand
- Purple Sulfur Bacteria
- Oxygenation
- Organic soil / muck

Sediment Flux Results

Flux Rate and Load Calculations

• Use flux rate equation or slope of curve between time and concentration to calculate sediment internal cycling load

 $Flux_{muck} = (Ct - Ci) \times V / A \times delta t$

• TMDL muck removal project load reduction credit equations

Flux_{net} = Flux_{muck} – Flux_{natural}

TN or TP Credit = Flux_{net} * total area dredged

• • •

Comparison of Treatment Performance and Cost Efficiency

- Greatest load removal by:
 - Dredging, sand and Phoslock for TP
 - Dredging and sand for TN

Alternative	Estimated Average Performance Efficiency (% Removal)		Estimated Average Load Reduction (lbs/yr)		Estimated Implementation Cost (\$)	Estimated Cost/ <u>lb</u> TP Removed (\$/lb)	Source for Cost Information	
	TN	ТР	TN	ТР				
Sand	35%	59%	1,793.10	1,270.80	\$700,346.18	\$551.11	Literature derived (Amec Foster Wheeler 2016): \$23,345/ac capped, assume 1 ft cap over 30 ac	
Phoslock	-63%	86%	-3220.6	1,194.00	\$450,000.00	\$376.88	Literature derived (Amec Foster Wheeler 2016): \$15,000/ac treated, assume 30 ac treated	
Floc & Lock	-73%	53%	-3655.8	724.9	\$362,450.00	\$500.00	Literature derived (Amec Foster Wheeler 2016): \$500/lb treated, assume 724.9 lbs TP treated	
Alum	11%	44%	548.4	567.2	\$180,000.00	\$317.35	Literature derived (ERD 2016): \$6,000/ac treated, assume 30 ac treated	
Dredging	100%	100%	5,031.80	1,378.80	\$1,428,000.00	\$1,035.68	Based on previous dredging design costs derived for Lake Bonnet Feasibility Study: \$42/cy removed for 34,000 cy removed	
Oxygenation/ Aeration	15%	15%	754.8	206.8	\$45,000.00	\$217.58	Provided by aeration vendor: \$1200/ac treated, assume 30 ac treated	

Comparison of Nutrient Sources

	Estimated Lo	ad to Lake	% of Total Load	
Nutrient Source	TN lbs/yr	TP lbs/yr	TN	ТР
Stormwater Runoff*	843	122.7	14.2%	8.2%
Groundwater Seepage	38.6	3.5	0.7%	0.2%
Sediment Cycling	5,031.8	1,378.8	85.1%	91.6%
Total Load to Lake	5,913.4	1,505		

Benefits of Site-specific Internal Loads

- Most models have not accounted for internal cycling or have underestimated loads and allocations
 - Nutrient budget models limited by sources readily measured (runoff)
 - Internal loads = net balance of sum of external loads
 - Internal loads not measured directly
- Can use to refine budgets to account for internal cycling
- Use to tailor sediment management design plans with treatment alternatives analysis results
 - Dredge areas that can't be capped, and cap areas that don't <u>need</u> to be dredged
- Use to request nutrient removal credits based on nutrient flux rates/loads

Summary

- External legacy and recent nutrient inputs lead to internal loads
- Sediments have capacity to serve as long-term source of nutrients, fueling algal growth and helping to maintain eutrophic conditions
- Internal sediment cycling is often major contributor of total nutrient loads
- Treatment alternatives analysis can provide informative results prior to making \$\$\$ management decisions that do not address the major sources

wood.

Mary Szafraniec, PhD, PWS Associate Scientist Water Resources Wood Environment & Infrastructure Solutions Mobile - 813.748.3625 Mary.Szafraniec@woodplc.com

woodplc.com

