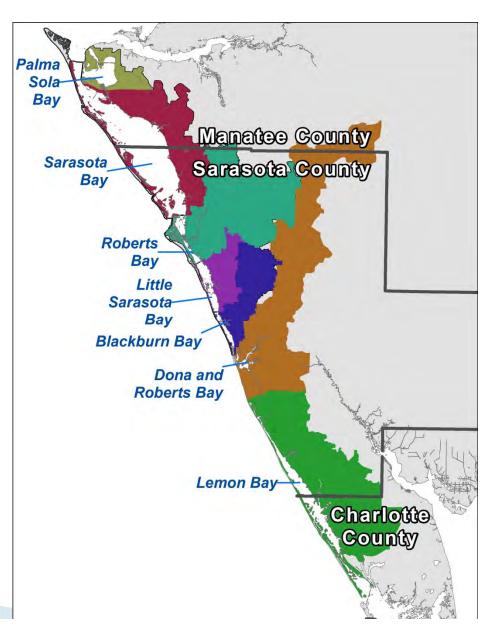
Can we determine which watershed changes are driving nitrogen trends in Sarasota County?

A Presentation to the Florida Stormwater Association, December 5, 2019

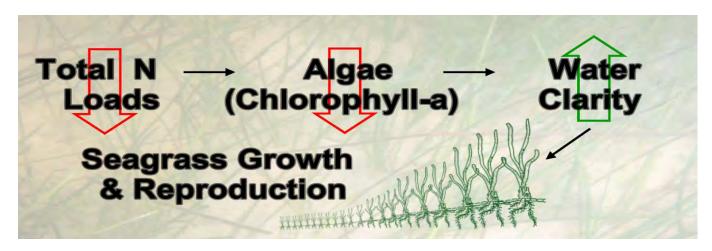
Janicki Environmental, Inc.


Jon Perry, Mike Wessel, and Tony Janicki

The Sarasota Bay Estuary Program

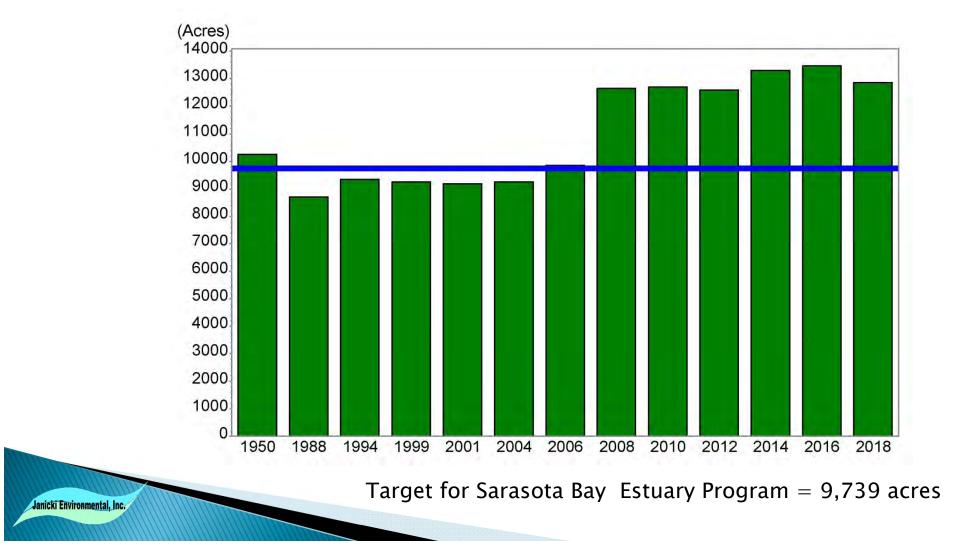
Between 1980's and 2010:

- Nitrogen pollution was reduced by an estimated 64%
- Seagrasses rebounded by 46% and have recently been above historical acreages
- Water quality achieved state standards and used to set the NNC


Factors Affecting Improvements

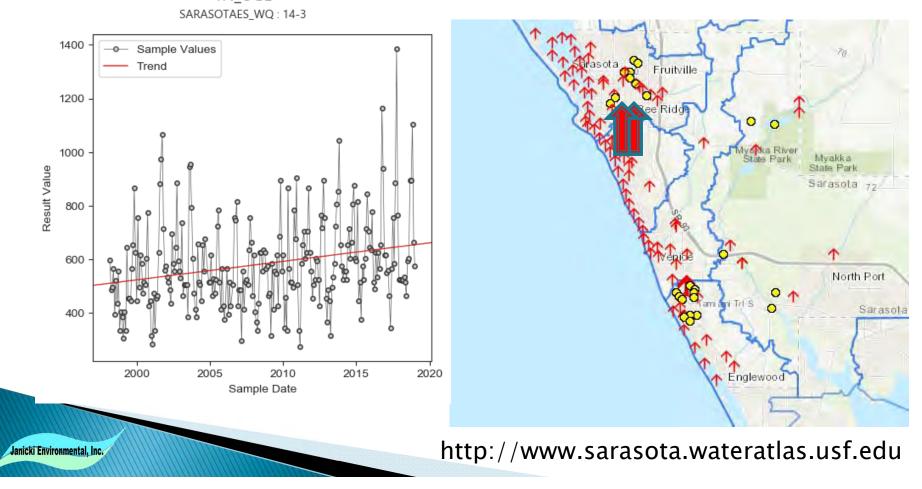
- Grizzle-Figg Act required wastewater discharges to SW Florida estuaries be treated to Advanced Wastewater Treatment (AWT) standards
- Improved stormwater treatment
- Septic to Sewer conversions in priority watersheds
- Eliminating small package plants and surface water discharges
- Increasing production for reclaimed water supply

Relevance to Water Quality Standards


Numeric Nutrient Criteria

 Based on a reference period when seagrasses (key ecological indicator) were stable

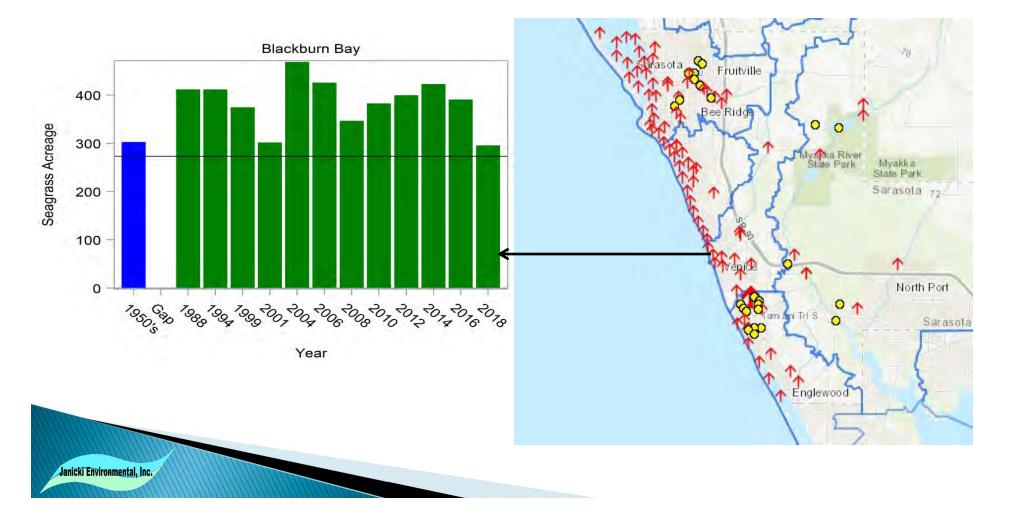
Seagrass - The Keystone Indicator



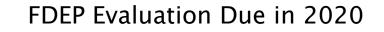
However:

- Trends in nitrogen concentrations have recently been increasing in Sarasota County
- Water quality standards for chlorophyll are now being exceeded in most segments
- Coincident episodes of harmful algal blooms have heightened concerns regarding nutrient pollution and its effects on estuarine health

Timeseries Trends in TN 1998-2018


Little Sarasota Bay

2008-2017


Blackburn Bay

2008-2017

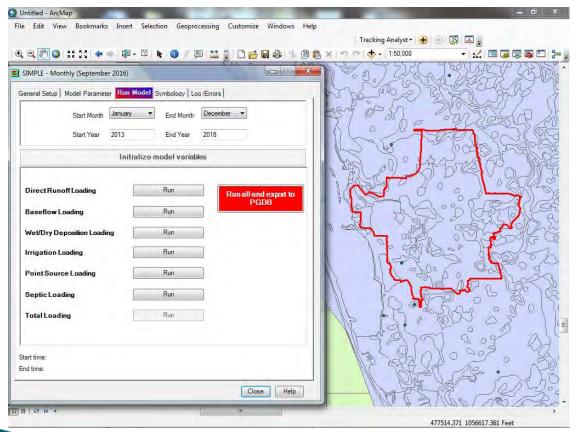
FDEP Assessment

Segment	WBID	Chlorophyll a	TN	ТР
Sarasota Bay	1968C	Impaired	Not Impaired	Not Impaired
Roberts Bay	1968D	Impaired	Not Impaired	Not Impaired
Little Sarasota Bay	1968E	Impaired	Not Impaired	Not Impaired
Blackburn Bay	1968F	Impaired	Impaired	Not Impaired

What's with these TN trends?

- Lots of Ideas
 - Laboratory results systematically biased?
 - Rainfall /Atmospheric deposition changing?
 - Groundwater concentrations increasing?
 - Background conditions increasing?
 - Has increased volume of reuse affected nitrogen trends?

Need for a systematic approach

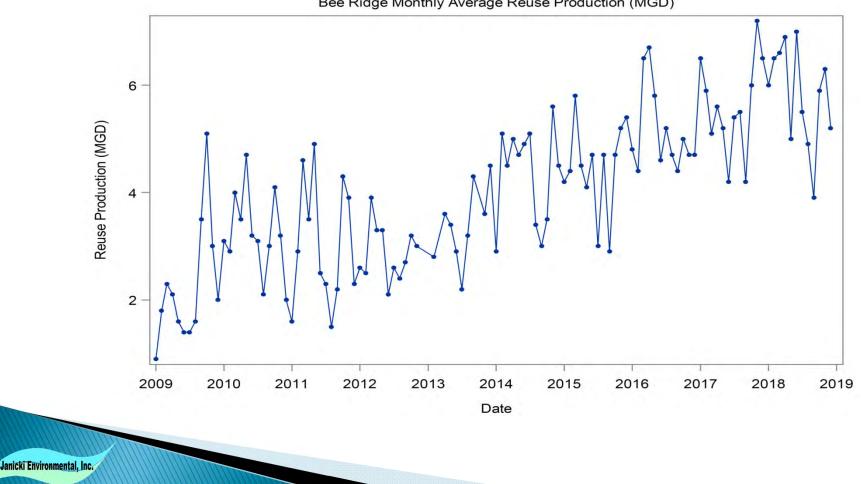

SIMPLE MODEL

Janicki Environmental, Inc.

MPLE - Monthly (September 201	16)			×		
neral Setup Model Parameters	Run Model Symbology	.og /Errors				
September 2016						
Basins:	Basins		*			
	Drain ID field:	BasinID	*			
Soils:	Soils		•	10 DETE	1.50 B . 10 A . 30	
	Hydrologic soil group fie	ld: HYDGRP	•			
NexRad:	NexradPixels		•	Place		
Landuse:	LandUse		-			
BMP:	BMP		•	11.	Section Contraction	
	BMP treatment type field	TREAT_TYPE	•		\mathcal{I}	1.
Point sources:	PointSources		•		the fact in the	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Point sources(non-compliant):	NCEifluent		*		1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Septic tanks:	Septic		•		Let on only P	
Irrigation:	Imigation		*		- · · · · ·	a ser in
	Irrigation source field	Source	•		No. Star	-
	Irrigation rate field	Rate	•		1 all	
Template for file-based GDB			111]		
Output file-based GDB	-			1		
Output personal GDB			[.au			
		C	lose Help			
					m	
					426976.555 1109	429.289 Feet

- Spatial Uses GIS Data
- Temporal Date stamped
- NEXRAD Rainfall
- Model Various Parameters
- Approved for use by WMDs, FDEP and EPA

SIMPLE MODEL



Sources

- Direct Runoff
- Baseflow
- Point Sources
- Septics
- Irrigation
- Atmospheric deposition

Reclaimed Irrigation – Update

Bee Ridge Monthly Average Reuse Production (MGD)

Reclaimed Irrigation

- Groundwater or Reclaimed
- Potable (\$\$\$)
- Reclaimed Water Irrigation
 - Currently set to 3 mg/L TN
 Volumes applied based on
 IFAS turf recommendations
 - 90% efficiency

anicki Environmental, Inc.

Reclaimed Irrigation

- Reclaimed Water Irrigation
 - Actual effluent 9–20 mg/L of TN
 - Adjust the volumes applied to volumes delivered
 - Based on meter readings, either to customer or aggregate by basin
 - 90% Efficiency

Summary

anicki Environmental, Inc.

- TN Concentrations are increasing
- Chlorophyll exceeding criteria
- Coincidental seagrass loss

But!

- SIMPLE Model Enhancements underway to better understand the drivers
- SBEP is championing the development of a

restoration plan

Restoration Plan or Reasonable Assurance Plan

SBEP serve as honest broker – existing inter-local agreements and WQ consortium and management structure in place

- Reevaluate Water Quality Targets
- Update/Reevaluate Loading Model
- Update Evaluation of Estuarine Responses
- Identify Nutrient Loading Limits
- Identify Nutrient Load Reduction Projects that Achieve Loading Limits

Many of the tools and data sources are in place

Restoration Plan or Reasonable Assurance Plan

- Eligibility for funding and cost sharing
- Stresses proactive efforts to reduce nutrients in the watershed
- Maintains local control Provides opportunity to demonstrate local efforts and provide local expertise
- Cleaner water faster

