

GREEN INFRASTRUCTURE AS AN EFFECTIVE POLLUTANT LOAD REDUCTION STRATEGY

Josie Benwell, M.S., ENV SP Project Coordinator Pinellas County Public Works

Why Green Infrastructure?

2010 Census.

Estimate from

People

15,539,597 visitors in 2018

= Total

Economic

Impact of

\$8,396,092,411

2018 is 975,280

Why are we making Green Infrastructure a priority in Pinellas County?

Perennial Ice/Snow/ (12) Developed, Open Space (21) Developed, Low Intensity (22) Developed, Medium Intensity (23) Developed, High Intensity (24) Barren Land (Rock/Sand/Clay) (31) Unconsolidated Shore (32) Deciduous Forest (41) Evergreen Forest (42) Mixed Forest (43) Dwarf Scrub(AK only) (51) Shrub/Scrub (52) Grasslands/Herbaceous (71) Sedge/Herbaceous(AK only) (72) Lichens (Ak only) (73) Moss (AK only) (74) Pasture/Hay (81) Cultivated Crops (82) Woody Wetlands (90) Emergent Herbaceous Wetlands (95)

Open Water (11)

National Land Cover Database (2016)

https://www.mrlc.gov/viewer/

Why are we making Green Infrastructure a priority in Pinellas County?

Environmental	High Land Costs	Operational	Community Benefit
Improve Water Quality	Avoid High Land Acquisition Costs	Reduce Maintenance	Provide Public Education
Mitigate Urban Heat Island Effect	Avoid Eminent Domain – Use Existing ROW	Lower Energy Use	Enhance Aesthetics
Reduce Air Pollution – Carbon Sinks	Improve Cost-Benefit of Projects	Lower Design and Construction Cost	Recreational Opportunity – Pocket Parks
Improve Habitat	Increase Opportunity for Grants	Decrease Mosquito Issues	Reduce Flooding
Increase Groundwater Recharge			
Reduce Erosion			

Largo Mall pervious pavement MacOlill AFB living shoreline Pilaklakaha Ave. (in Auburndale, FL) bioswald

Gray verses Green Infrastructure

https://archdesign.utk.edu/ut-landscape-architecture-creates-guide-for-east-tennessee-water-resources/

Establishment of a Green Infrastructure Program

Next Step: Green Infrastructure Siting Project - 3 Phases

N

Pinellas Countu

Contact Information:

Josie Benwell, M.S., ENV SP jbenwell@pinellascounty.org

Green Infrastructure as an Effective Pollutant Load Reduction Strategy

Florida Stormwater Association Winter Conference 2019

Mark Ellard, PE, CFM, D.WRE, ENV SP December 5, 2019

Goals

- Develop a rating and suitability framework for siting GI as part of the new GI program
 - Take into account where the COUNTY owns property or has Right-of-Way
 - TMDL /impaired water priority areas
 - Considering site suitability (landuse, soils, water table, etc.)
- End result to provide framework and toolset to evaluate water quality benefits and suitability to conceptualize and prioritize future GI projects
- Produce initial list of ranked GI projects
- Top ranked projects are conceptualized as proof of concept
- SOPs developed so COUNTY may easily replicate the results
- Establish standardized water quality benefit evaluation procedures
 - Water quality analysis functionality to evaluate GI features built into ICPR 4
 - New functionality for estimating the water quality benefit in consistent manner

Scope of Work

1 another took
reusvinec
2000,11000
appointente
consultants

Task	Scope of Work Description	
Task 1	Collection & Review of Existing Data	
Task 2	Project Development	
Task 3	Initial Screening of Sites	
Task 4	Coordinate Water Quality and GI Functionality in ICPR 4	
Task 5	Final (Ranked) GI Projects	

Leverage Stormwater Manual BMPs

S DE MAR	Structu
	SW1
	SW2
	SW3
	SW4
	SW5

Structural BMPs	Structural Stormwater BMPs	Manual Section	Explicit Load Reduction Credit
SW1	Retention Basin	6.1	1
SW2	Exfiltration Trench	6.2	4
SW3	Underground Storage and Retention	6.3	N
SW4	Treatment Swales	6.4	1
SW5	Vegetate Natural Buffers	6.5	1
SW6	Pervious Pavements	6.6	V
SW7 Green Roofs with Cisterns		6.7	A
SW8 Wet Detention Systems		6.8	1
SW9	Stormwater Harvesting/ Horizontal Wells	6.9	4
SW 10	Up-Flow Filter Systems	6.10	1
SW11	Managed Aquatic Plant Systems	6.11	V
SW12	Biofiltration Systems/Tree Box Filters	6.12	
SW13	Rain gardens	6.13	N
SW14	Rainwater Harvesting/Cisterns	6.14	V
SC15	Rainfall Interceptor Trees	6.15	1

SOP Manual

- Develop Flow Chart of Process
- Describe Data Requirements
 - Exclusionary Data
 - Weighting Data and Assumptions
 - BMP Suitability
 Guidance
- Calculations Logic
- GIS Tool Operation
 Procedures
- Examples

Exclusionary Data

Default Values of Exclusionary Tool Input Parameters

Input Parameter	Default Value	Purpose
Minimum Parcel Area (ft²)	250	Minimum parcel size considered for potential sites.
Minimum Mowing Area (ft²)	100	Minimum mowing area size considered for potential sites.
Minimum Mowing Width (ft)	7	Minimum width of mowing areas considered for potential sites.
Permitted Facility Buffer Distance (ft)	50	Minimum distance between a potential site and a permitted facility point.

T1_Exclusionary					×
Input Geodatabase					
C:\Projects_Local\FW3497_GREEN_INFRASTR	UCTURE\Scratch	GI_Screening_	Tool_Data.gdb	6	3
Minimum Parcel Area (sq ft)					
				25	0
Minimum Mowing Area (sq ft)				_	_
				10	0
Minimum Mowing Width (ft)					_
					7
Permitted Facility Buffer (ft)					-
				5	0
					Y
	1		1		
	OK	Cancel	Environments	Show Help	>>>

Weighting Values

Default Values of Weighting Tool Input Parameters

Input Parameter	Default Value	Purpose	
Slope Threshold (%)	2	Upper limit of the subbasin average slope awarded the slope score.	
BMP Area Score	2	Sub-score awarded to sites intersecting BMP areas.	
	6 (High Rank)		
BMP Matrix 81 Scores	4 (Medium Rank)	Sub-score awarded to sites intersecting BMP Matrix 81 areas. Scores awarded based on rank.	
	2 (Low Rank)		
CIP Score	8	Sub-score awarded to sites intersecting CIPs.	
FDEP Hazpoly Score	-10	Sub-score awarded to sites intersecting any of the FDEP hazard sites polygon features.	
Impervious Score Factor	20	Factor applied to the subbasin impervious percentage to calculate the impervious sub-score.	
Municipal Score	2	Sub-score awarded to sites intersecting unincorporated areas.	
Opportunity Zone Score	6	Sub-score awarded to sites intersecting opportunity zones.	
Parcel Hazard Score	-10	Sub-score awarded to sites intersecting parcels containing any of the FDEP hazard sites point features.	
Slope Score	4	Sub-score awarded to sites within subbasins with an average slope <= the slope threshold.	
Priority Nutrient	Total Nitrogen	Used to select the default subbasin loading score equation.	
Subbasin Loading Score Equation	If priority nutrient = TN: 2*[TN] If priority nutrient = TP: 2 / (1 – [TP])	Used to calculate sub-score based on the subbasin area-weighted average EMC.	
TMDL Score	10	Sub-score awarded to sites intersecting basins with established TMDLs.	

Weighting Values

Default Values of Weighting Tool Input Parameters

	Maximum Slope (%)
	2
	BMP Area Score
	BMP Matrix 81 Scores
💐 T2_Weighting — 🗆 🗙	
	6
GI Sites	4
C:\Projects_Local\FW3497_GREEN_INFRASTRUCTURE\Scratch\GI_Screening_Tool_Data.gdb\GI_Sites_20190626_2108	2
Input Geodatabase	1
C:\Projects_Local\FW3497_GREEN_INFRASTRUCTURE\Scratch\GI_Screening_Tool_Data.gdb	
DEM	•
C:\Projects_Local\FW3497_GREEN_INFRASTRUCTURE\ToolData\GI_Screening_Tool\pinellas07enh	
EMC Lookup Table	
C:\Projects Local\EW3497 GREEN INERASTRUCTURE\ToolData\GL Screening Tool\EMC Lookup Table.vls\Sheet1\$	CIP Score
	8
* Advanced	FDEP Hazpoly Score
	Impervious Score Factor
	20
	Municipal Score
× .	2
	opportunity zone score
OK Cancel Environments Show Help >>	Parcel Hazard Score
	-10
	Slope Score
	T Priority Nutrient
	Total Nitrogen
	Subbasin Loading Score Equation
	4*[TN]
	TMDL Score

BMP Guidance

The BMP Guidance Tool performs additional spatial analyses on the ranked GI Sites to flag BMP types that may be unsuitable for a given site.

- BMPs limited by drainage potential and
 proximity to septic systems and hazard sites
 - **o** Retention basins
 - **o** Exfiltration trench
 - **o** Underground retention
 - Treatment swales
 - **o** Vegetated natural buffer
 - Pervious pavements
 - **o** Biofiltration / TreeBox
 - Rain gardens

BMPs limited by proximity to septic systems and hazard sites

- Wet detention
- BMPs limited by proximity to hazard sites
 - Rainwater harvesting
 - Stormwater harvesting

BMP Guidance

Default Values of BMP Guidance Tool Input Parameters

Input Parameter	Default Value	Purpose
Minimum Septic Confidence	Likely	The minimum level of confidence (e.g., known, likely) to treat as septic systems.
Septic Buffer Distance (ft)	15	The minimum distance between a site and a septic system considered suitable. Selection of septic sites is based on the minimum septic confidence parameter.
Minimum Hydrologic Soils Group	В	The hydrologic soils group with the minimum drainage capacity (e.g., well-drained, moderately drained, poorly drained) considered suitable.
Minimum Water Table Depth (ft)	2	The minimum depth to the average water table elevation considered suitable.
Well Buffer Distance (ft)	50	The minimum distance between a site and a potable well considered suitable.

or ones		
C:\Projects_Local\FW3497_GREEN_INFRAST	RUCTURE\Scratch\GI_Screening_Tool_Data.gdb\GI_Sites_20190626_2108	
Input Geodatabase		_
C:\Projects_Local\FW3497_GREEN_INFRAST	RUCTURE\Scratch\GI_Screening_Tool_Data.gdb	8
Minimum Septic Confidence		
Likely		~
Septic Buffer Distance (ft)		
		15
Minimum Hydrologic Soils Group		
В		~
Minimum Water Table Depth (ft)		_
		2
Well Buffer Distance (ft)		-
		50
	OK Cancel Environments Show	v Help >>

Data Process Flow: Weighted Data

Weighting Data

BMP_Areas "Atkins/Penny IV Projects"	
BMP_Matrix_SI *Atkins/Penny IV Projects*	Ground_Water_Contamination_Areas
Brownfield_Areas	Landuse_Clip_Boundary
Brownfield_Sites	Land_Use_Land_Cover
CIPPROJECTS	MunicipalBoundary
Closed Hazardous Waste Facilities	Opportunity Zones
DEP_Cleanup_Sites	Petroleum_Contamination_Monitoring_PCTS_Discharges
Drycleaning_Solvent_Program_Cleanup_Sites	pinellus07enh "DEM"
Impervious_Arens	RoadMaintenance StateOwned Lands Cleanup Program SOLCP Sites
EPA_Established_Total_Maximum_Daily_Loads_TMDLs	Sub_Basins
Export_Output "King Top 23 Projects"	Top50 "King Top 50 Projects"
FDEPSITESROW	Waste_Cleanup_CLOSED_Responsible_Party_Sites
Florida_Institutional_Controls_Registry	Waste Cleanup_INACTIVE_Responsible_Party_Sites
Florida_State_Funded_Cleanup_Sites	Waste_Cleanup_OPEN_Responsible_Party_Sites
Florida_Superfund_Waste_Cleanup_Sites	

Rankings for all potential GI sites

S	Sub - Scores	_	Site Ranking	BMP St	BMP Suitability			
re	Parcels_Haz_Score	Imp_Score	Site_Ranking	Retention_Basin	Exfiltration_Trench			
0	0	6	44	0	0			
0	0	8	40	1	1			
0	0	8	39	1	1			
0	0	4	35	0	0			
0	0	5	32	1	1			
0	0	8	31	0	0			
0	0	4	27	0	0			
0	0	5	27	0	0			
-10	0	7	27	0	0			

Figure 4: Site BMP_737, Second Ranked Site (tied)

Figure 6: Site BMP_517, Thirteenth Ranked Site

Figure 7: Site BMP_708, Last Ranked Site

Figure 8: Site BMP_83, Site with Zero Score (tied)

Green Infrastructure as an Effective Pollutant Load Reduction Strategy Florida Stormwater Association Winter Conference 2019

Peter J. Singhofen, P.E. Streamline Technologies, Inc.

WQ MODULE DESIGN STRATEGY

- Watershed Approach
- Water Quality Fully Integrated with H&H
 - EMCs Applied to Distributed Hydrology
 - Mass Balance at Nodes
 - Pollutants Transferred via Links
 - Removal Efficiencies can be Specified at any Node or Link
 - Percolation can be used to Remove Pollutants
- Continuous Simulations Required
- Multiple Constituents Analyzed Simultaneously
- Initial, Irreducible & Boundary WQ Included

Physical processes associated with infiltration/percolation and evapotranspiration are modeled instead of relying on empirically based performance curves

ICPR Functionality	BMPs
Percolation & French Drain Links	Dry Retention, Exfiltration Trenches, Underground Storage, Treatment Swales, Pervious Pavement, Rain Gardens
Removal Efficiencies Specified at Nodes	Wet Detention Systems, Managed Aquatic Plant Systems (MAPS), User Defined BMPs
Removal Efficiencies Specified at Links	Upflow Filtration Systems, Biofiltration Systems with BAM, User Defined BMPs
Storage, Evapotranspiration & Irrigation	Vegetated Natural Buffer, Vegetated Filter Strip, Green Roof/Cistern Systems, Stormwater & Rainwater Harvesting, Interceptor Trees

PINEBROOK CANAL CROSS BAYOU WATERSHED, PINELLAS COUNTY

1,413 ac - 58 BASINS - 75 NODES - 176 LINKS

© 2019, Streamline Technologies, Inc.

EMCs by LAND USE (mg/l)

© 2019, Streamline Technologies, Inc.

INTERSECTION of MAP LAYERS by BASIN AUTOMATED in ICPR

(DISTRIBUTED HYDROLOGY APPROACH)

Ianual Basin Sub-Bas	in Edit				
+ 光文品近内					
Area	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
47.43569	8 1300	1017108	96521	Grass (Developed)	96521
15.75417	8 1400	1017108	96521	Grass (Developed)	96521
9.5109	5 1400	1017097	96521	Grass (Developed)	96521
2.21818	2 1300	1017097	96521	Grass (Developed)	96521
0.20454	5 8100	1017097	96521	Grass (Developed)	96521
3.47229	1 8100	1017108	96521	Grass (Developed)	96521
0.14093	2 1300	1017108	96521	Water	96521
0.45190	5 5300	1017108	96521	Water	96521
0.00273	2 5300	1017108	96521	Grass (Developed)	96521
1.54063	4 1400	1017089	96521	Grass (Developed)	96521
1.57364	5 1300	1017083	96521	Grass (Developed)	96521
0.01395	8 1300	1017083	96521	Water	96521
0.22688	2 5300	1017089	96521	Water	96521
0.00360	4 5300	1017089	96521	Grass (Developed)	96521
0.00358	1 1400	1017089	96521	Water	96521
0.00055	1 5300	1017083	96521	Water	96521
0.00596	9 1300	1017089	96521	Grass (Developed)	96521
0.08085	4 1400	1017083	96521	Grass (Developed)	96521

CONTINUOUS SIMULATION (1996 - 2017)

ANNUAL TN & TP LOADS FOR BASIN J3899

WQ MODULE STATUS

- Mathematical Algorithms Completed
 - ✓ ID & 2D
 - ✓ BETA Testing Underway
- Working on User Interface
 - ✓ Input Forms
 - ✓ Reports
 - ✓ Charts
 - ✓ Animations
- ICPR Expert Required
- Hope to Release by 2nd Quarter 2020

GI Project Example

Identified Potential GI sites

- Based on County Owned and/or maintained property
- Intended to focus on small/medium scale projects
- Ranked based on number of spatial factors
 - % impervious
 - Soils
 - Land use \sim pollution generation potential
 - Proximity to contaminated sites
 - More...
- Sites shown ranked in top 15

Identified Potential GI Sites - Characteristics

Soils:

Impact runoff potential Impact BMP selection All A/D soils (No infiltration BMPs)

Existing Landuse: Transportation Medium Density Residential Recreational

Proposed Landuse adds: Wet Detention Pond Interceptor Trees Result in an increase in initial abstraction for areas of canopy that cover impervious surfaces

 $\neg \gamma$

Evaluation of Water Quality Performance Using ICPR v.4

- Water quality analysis requires continuous simulation model
 - Need hourly rainfall data for more than 10 years (preferably 15 years or more) – NOAA
 - Capture temporal variability of rainfall conditions
 - Determine average annual performance
 - Need ET data (per day) USGS

🧾 PI	INELLAS_ra	ainfall.txt - No	tepad		
File	Edit For	mat View	Help		
0					Rainfall CSV
60					filo
2006	1	1	9	0.01	me
2006	1	2	15	0.01	
2006	1	3	13	0.09	
2006	1	5	7	0.01	
2006	1	12	9	0.01	
2006	1	13	13	0.01	
2006	1	14	4	0.01	
2006	1	18	3	0.1	
2006	1	18	6	0.01	
2006	1	18	7	0.04	
2006	1	18	8	0.01	
PINE	LLAS_ET.tx	t - Notepad			
Eilo Edi	+ Eormat	· View Hel			
A	t Tonna	VIEW TIE	P		
	6	1	12	0,28358283	
1995	6	2	12	0.05759846	ET CSV file
1995	6	3	12	0.07039374	
1995	6	4	12	0.06984256	
1995	6	5	12	0.22724422	
1995	6	6	12	0.24818911	
1995	6	7	12	0.23192926	
1995	6	8	12	0.26405526	
1995	6	9	12	0 25964581	
1995	6	10	12	0 22598437	
1995	6	11	12	0 19153554	
1995	6	12	12	0.20787413	

Evaluation of Water Quality Performance Using ICPR v.4

• Develop EMC table

- Relates FLUCFCS to land use specific EMCs (based on Harper & Baker, 2011)
- Can evaluate any water quality parameters
 - Intended for TN and TP
 - Other parameters removal must be consistent with TN and TP, i.e., follow same removal mechanisms and characteristics
- Need to set default value
 - To provide EMC for FLUCCS codes not included in table
- Need to set irreducible concentration for parameters
 - To account for minimum concentrations that BMPs are unable to reduce a contaminate below
 - If a removal efficiency provided by a BMP will reduce the concentration below this value, the model will default to this concentration rather than report removals that are not realistic

		A B C						
	А	В		С				
1	landuse	TN		ТР				
2	default		1	0.25				
3	irreducible		0.2	0.01				
1	1200	2	.07	0.327				
5	1800	2	.07	0.327				
5	8100	1	.52	0.2				
7								

Build Existing and Proposed Conditions Models

- Develop node/link networks
- Determine contributing areas
 - May be different existing to proposed
- Determine Green-Ampt
 parameters
 - CN method not appropriate for WQ analysis since it doesn't allow for tracking of soil storage

Build Proposed Conditions Model

• Proposed GI BMPs

- Wet Detention Pond with Upflow Filter
 - Pond pollutant removal addressed in node
 - Upflow Filter pollutant removal addressed in rating curve
- Interceptor Trees
 - Increase in initial abstraction applied in hydrology model for areas of canopy that cover impervious surfaces
- Model tracks input and output loading from hydrology and through the network at each time step

Geosyntec[>]

consultants

Run Model and Evaluate Results

• CSV output

- "TN_out_removed_nodes_lb" provides the cumulative TN mass that was removed due to node based BMPs
 - Note that this is the cumulative removal due to all node based BMPs
- "TN_out_removed_links_lb" provides the cumulative TN mass that was removed due to link based BMPs
 - Note that this is the cumulative removal due to all link based BMPs

💷 time 🕞	TN_stored_lb	[N_out_removed_nodes_lb	N_out_removed_links_lb	TN_in_irreducible_lb	N.in_basin_lb 💌 TN.in_	boundary_lb 💽 TN_out_	boundary_lb 💽 TN_in_other_lb	- TN_C	ut_other_lb 🖂
474 121472	0.83262	128.24788	156.914456	2.581526	665.469007	0	367.463322	0	14.603756
475 121473	0.83236	128.24788	156.914603	2.581526	665.469007	0	367.46343	0	14.603756
476 121474	0.8321	128.24788	156.914693	2.581526	665.469007	0	367.463537	0	14.603756
477 121475	0.83207	128.247885	156.914693	2.581526	665.469007	0	367.463636	0	14.603756
478 121476	0.83189	128.24788	156.914771	2.581526	665.469007	0	367.463737	0	14.603756
479 121477	0.83170	128.24788	156.914863	2.581527	665.469007	0	367.46383	0	14.603756
480 121478	0.83156	128.247885	156.914914	2.581527	665.469007	0	367.463918	0	14.603756
481 121479	0.83141	128.247885	156.914985	2.581527	665.469007	0	367.464005	0	14.603756
482 121480	0.83130	128.24788	156.915004	2.581527	665.469007	0	367.46409	0	14.603756
493 121481	0.83114	128.247885	156.915087	2.581528	665.469007	0	367.464171	0	14.603756
484 121482	0.83103	128.247885	156.915116	2.581528	665.469007	0	367.464248	0	14.603756
485 121483	0.83091	128,24788	156.915165	2.581528	665.469007	0	367.464322	0	14.603756
486 121484	0.83081	128.247885	156.915196	2.581528	665.469007	0	367.464393	0	14.603756
487 121485	0.8306	128.247885	156.915329	2.581529	665.469007	0	367.464463	0	14.603756
488 121486	0.83054	128.247885	156.915329	2.581529	665.469007	0	367.464532	0	14.603756
489 121487	0.83047	128.247885	156.915329	2.581529	665.469007	0	367.464596	0	14.603756
490 121488	0.83038	128.24788	156.915362	2.581529	665.469007	0	367.464659	0	14.603756
491 121489	0.83020	128.247885	156.915476	2.581529	665.469007	0	367.464719	0	14.603756
492 121490	0.83014	128.247885	156.915476	2.581529	665.469007	0	367.464779	0	14.603756
493 121491	0.83009	128.24788	156.915476	2.581529	665.469007	0	367.464837	0	14.603756
494 121492	0.82995	128.247885	156.915558	2.58153	665.469007	0	367.464892	0	14.603756
495 121493	0.82989	128.24788	156.915558	2.58153	665.469007	0	367.464946	0	14.603756
496 121494	0.82983	128.24788	156.915574	2.58153	665.469007	0	367.464997	0	14.603756
497 121495	0.82974	128.247885	156.915611	2.58153	665.469007	0	367,465047	0	14.603756
498 121496	0.82961	128.24788	156.915691	2.58153	665.469007	0	367.465094	0	14.603756
199 121497	0.82957	128.24788	156.915691	2,58153	665.469007	0	367.465141	0	14.603756
500 121498	0.82952	128,247885	156.915691	2.58153	665.469007	0	367.465188	0	14.603756
501 121499	0.82936	128.24788	156.915805	2.58153	665.469007	0	367.465231	0	14.603756
502 121500	0.82932	128.24788	156,915805	2.58153	665.469007	0	367.465273	0	14.603756
503 121501	0.82928	128.247885	156,915805	2,58153	665.469007	0	367.465315	0	14.603756
504 121502	0.82924	128.247885	156.915805	2.581531	665.469007	0	367.465355	0	14.603756
505 121503	0.82920	128.247885	156.915805	2.581531	665.469007	0	367.465394	0	14.603756
506 121504	0.82913	128.247885	156.915835	2.581531	665.469007	0	367.465432	0	14.603756
507 121505	0.82910	128.24788	156.915835	2.581531	665.469007	0	367.465469	0	14.603756
508 121506	0.82900	128.247885	156.915898	2.581531	665.469007	0	367.465505	0	14.603756
509 121507	0.82896	128.247885	156.915898	2.581531	665.469007	0	367.46554	0	14.603756
510 121508	0.82892	128.24788	156.915902	2.581531	665.469007	0	367.465575	0	14.603756
511 121509	0.82886	128.247885	156.915931	2.581531	665.469007	0	367.465608	0	14.603756
512 121510	0.82883	128.24788	156.915931	2.581531	665.469007	0	367.46564	0	14.603756
513 121511	0.82874	128.24788	156.915985	2.581531	665.469007	0	367.465672	0	14.603756
514 121512	0.82871	128.247885	156,915985	2.581531	665.469007	0	367.465704	0	14.603756
515 121513	0.82868	128.247885	156.915985	2.581531	665.469007	0	367.465735	0	14.603756
516 121514	0.82831	128.247885	156.916326	2.581531	665.469007	0	367.465764	0	14.603756
517 121515	0.82828	128.247885	156.916326	2.581531	665.469007	0	367.465793	0	14.603756
518 121516	0.82825	128.24788	156.916326	2.581531	665.469007	0	367.465821	0	14.603756
519 121517	0.82823	128.247885	156.916326	2.581531	665.469007	0	367.465847	0	14.603756
520 121518	0.82820	128.247885	156.916326	2.581531	665.469007	0	367.465873	0	14.603756
521 121519	0.8281	128.247885	156.916326	2.581531	665.469007	0	367.465899	0	14.603756
522 121520	0.82815	128.247885	156.916326	2.581531	665.469007	0	367.465924	0	14.603756
523 121521	0.82813	128.247885	156.916326	2.581531	665.469007	0	367.465949	0	14.603756
524 121522	0.82810	128.24788	156.916326	2.581531	665.469007	0	367.465972	0	14.603756
525 121523	0.82808	178 7479	156 91622	2 581521	665 469007	0	257 455995	0	14 603755

Run Model and Evaluate Results

• CSV output

- "TN_in_irreducible_lb" provides the minimum TN mass that can be present for the given timestep
- "TN_in_basin_lb" provides a cumulative TN that entered the basin
- "TN_out_boundary_lb" provides the cumulative TN removed via the BMPs
 - Note this is due to the cumulative effect of all BMPs, not for each.
- Based on this, total TN removal = 21.3 lb/yr (45% removal) on an average annual basis

🚽 time 🛛 👻 TN	l_stored_lb 🚽 TN_out_r	removed_nodes_lb 🔄 TN_out_r	emoved_links_lb 🖂 (N_	in_irreducible_lb	N_in_basin_lb 💌	N_in_boundary_lb	TN_out_boundary_lb	in_other_lb 💌 TN_o	ut_other_lb 💌
74 121472	0.832622	128.247885	156.914456	2.581526	665.469007		367,463322	0	14.603756
75 121473	0.832367	128.247885	156.914603	2.581526	665.469007		367.46343	0	14.603756
76 121474	0.83217	128.247885	156.914693	2.581526	665.469007		367.463537	0	14.603756
121475	0.832071	128.247885	156.914693	2.581526	665.469007		367.463636	0	14.603756
78 121476	0.831892	128.247885	156.914771	2.581526	665.469007		367.463737	0	14.603756
79 121477	0.831708	128.247885	156.91486:	2.581527	665.469007		367.46383	0	14.603756
121478	0.831569	128.247885	156.914914	2.581527	665.469007		367.463918	0	14.603756
121479	0.831411	128.247885	156.914985	2.581527	665.469007	and the second se	367.464005	0	14.603756
121480	0.831307	128.247885	156.915004	2.581527	665.469007		367.46409	0	14.603756
121481	0.831144	128.247885	156.915087	2.581528	665.469007		367.464171	0	14.603756
4 121482	0.831037	128.247885	156.915116	2.581528	665.469007		367.464248	0	14.603756
5 121483	0.830916	128.247885	156.915165	2.581528	665.469007		367.464322	0	14.603756
6 121484	0.830813	128.247885	156.915196	2.581528	665.469007		367,464393	0	14.603756
7 121485	0.83061	128.247885	156.915329	2.581529	665.469007		367.464463	0	14.603756
121486	0.830542	128.247885	156.915329	2.581529	665.469007		367.464532	0	14.603756
9 121487	0.830478	128.247885	156.915329	2.581529	665.469007		367.464596	0	14.603756
0 121488	0.830383	128.247885	156.915362	2.581529	665.469007		367.464659	0	14.603756
121489	0.830209	128.247885	156.915476	2.581529	665.469007		367,464719	0	14.603756
121490	0.830149	128.247885	156.915476	2.581529	665.469007		367.464779	0	14.603756
121491	0.830091	128.247885	156.915476	2.581529	665.469007		367.464837	0	14.603756
94 121492	0.829953	128.247885	156,915558	2,58153	665,469007		367,464892	0	14,603756
5 121493	0.829899	128.247885	156.915558	2,58153	665.469007		367.464946	0	14.603756
6 121494	0.829832	128.247885	156,915574	2,58153	665,469007		367,464997	0	14,603756
7 121495	0.829746	128.247885	156,915611	2,58153	665,469007		367.465047	0	14,603756
8 121496	0.829619	128.247885	156,915691	2,58153	665.469007		367.465094	0	14.603756
9 121497	0.829573	128.247885	156,915691	2,58153	665,469007		367.465141	0	14,603756
121498	0.829526	128,247885	156,915691	2,58153	665,469007		367,465188	0	14,603756
1 121499	0.829369	128,247885	156,915805	2,58153	665,469007		367.465231	0	14,603756
12 121500	0.829327	128.247885	156.915805	2,58153	665,469007		367.465273	0	14.603756
121501	0.829285	128 247885	156 915809	2 58153	665 469007		367 465315	0	14 603756
4 121502	0.829245	128 247885	156 915805	2 581531	665 469007		367 465355	0	14 603756
121503	0.829206	128.247885	156,915805	2,581531	665,469007		367.465394	0	14.603756
121503	0.829139	128 247885	156 915835	2 581531	665 469007		367,465432	0	14.603756
7 121505	0.829102	128 247885	156 915835	2.581531	665 469007		367.465469	0	14.603756
121505	0.829001	128 247885	155 915895	2.581531	665 469007		367,465505	0	14.603756
121507	0.828966	128 247885	156 915898	2 581531	665 469007		367 46554	0	14.603756
121508	0.828929	128 247885	156 915903	2.581531	665 469007		367.465575	0	14.603756
121509	0.828866	128 247885	156 915931	2 581531	665 469007		367,465508	0	14.603756
121510	0.828800	120.247003	156 915991	2.581531	665 469007		367.46564	0	14.603756
121510	0.020034	120.247003	156 015005	2,301331	665 469007		307.40304	0	14,003730
121511	0.020740	120.247003	156 015000	2.501531	665 460007		267 465072	0	14.003756
5 121512	0.020710	120.247005	156 015005	2.501531	665 469007		267.465725	0	14.603756
121515	0.020003	120.247003	156.016326	2,301331	665,469007		307,403733	0	14.003730
121514	0.020313	120.247803	156.910520	2,361331	665 469007		307,403704	0	14.003756
121515	0.020200	120.247005	156 016320	2.501531	665 469007		307,403733	0	14.603756
121513	0.020202	120.24/003	156 01627	2.001031	665 469007		267.465847	0	14.003750
12151/	0.020232	120.24/003	150,910520	2.561531	665 469007		307.403847	0	14.003/50
121518	0.828200	128.24/885	156.916320	2.581531	665,469007		307.403873	0	14.603756
121519	0.02010	120.24/303	150.910320	2.561531	665 469007		307,403899	0	14.003/56
121520	0.828155	128.24/885	156.916320	2.581531	665,469007		307,405924	0	14.603756
121521	0.828131	128.247885	150.910320	2.581531	005.409007		307.403949	0	14.003/56
121522	0.828107	128.247885	156.916320	2.581531	065.409007		367,465972	0	14.003756
171573	11 8 28084	1.28 24 7895	156 916226	2 581521	BBS (BSU)07		767 76500		1/1 0/12 756

Acknowledgements

- Pinellas County
 - Josie Benewell Project Manager
 - Jim Bernard Capital Projects Manager
- Streamline Technologies

 Pete Singhofen
- Geosyntec Team
 - Mark Ellard Project Director
 - Mike Hardin Project Manager
 - Max Wallace Project Engineer
 - Nick Hartshorn, Dan Wen, Yungie Zhang GI Modelers

Thamk You !

Mark W. Ellard, PE, CFM, D.WRE, ENV SP

Senior Principal, Water Resources

Geosyntec Consultants

1511 East State Road 434, Suite 1005 Winter Springs, Florida 32708 Phone: 407-321-7030 WWW.geosyntec.com

engineers | scientists | innovators