

GET THE MOST BAM FOR YOUR BUCK!

PERFORMANCE ENHANCEMENT OF BIOSORPTION ACTIVATED MEDIA TREATMENT TRAINS BY INCORPORATING SLOUGHED BIOFILM CAPTURE

Andrew C. Hood, Ph.D.

BAM

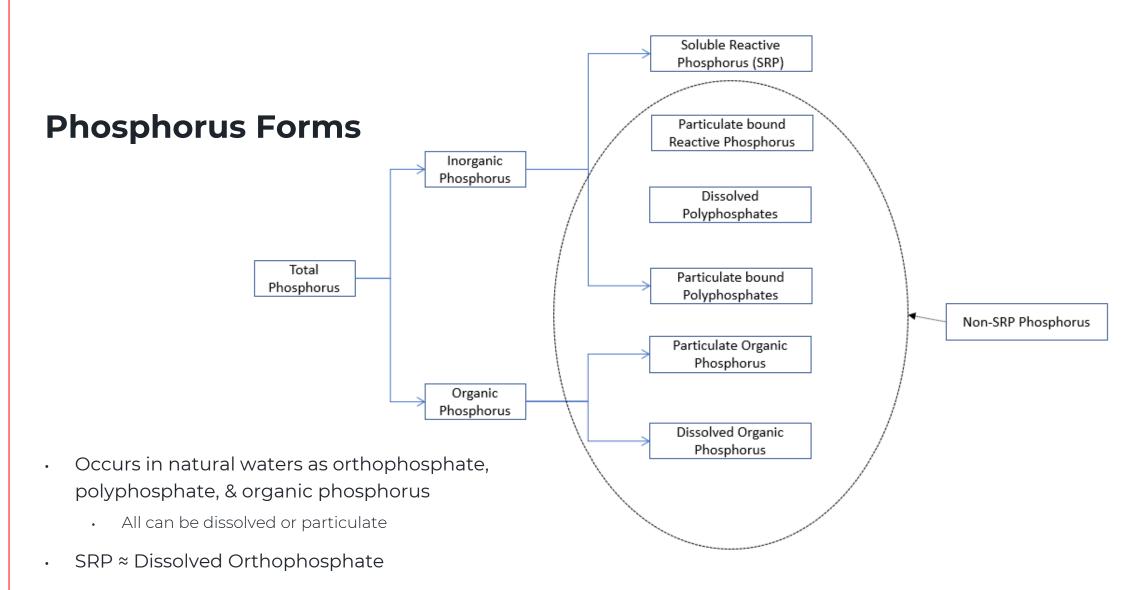
•

•

•

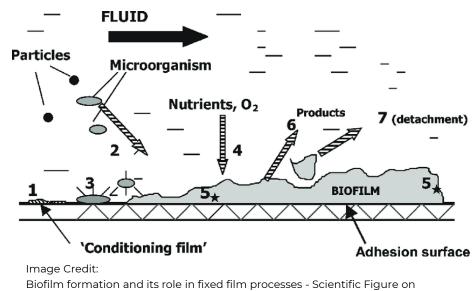
•

Common Engineering Assumptions:


- Steady State for Bio-Assimilation
 - Biomass growth = Sloughed Biomass discharging
 - Decrease in TP is due to filtration and sorption, not bio-assimilation
 - Soluble Reactive Phosphorus (SRP)
 - Decrease in concentration = Removal
 - Decrease in SRP is due to Sorption
 - Commonly used BAM Lifespan calculation:
 - Decrease in Orthophosphate = Consumption of Sorption Capacity

Media

Familiar brand: Bold & Gold



 Dissolved Orthophosphate is readily available for biological uptake

Biofilm – What is it?

Familiar Biofilm examples:

- Slime on a rock
- · That feeling on your teeth in the morning

ResearchGate. Available from:

https://www.researchgate.net/figure/Phenomenology-of-biofilmformation_fig1_285114204 [accessed 11 May, 2023]

Biological Activity

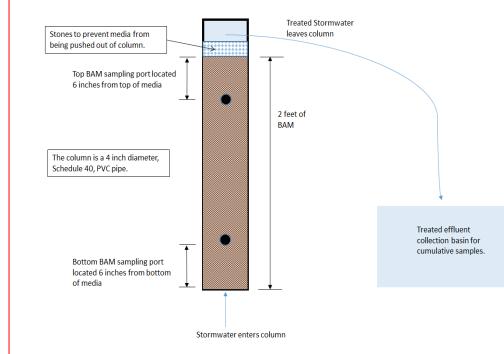
- Microcosms in biofilm due to limitation of diffusion
- Assimilation = new biomass
 - Cell biomass = $\mathrm{C_{12}H_{87}O_{23}N_{12}P}$ (Metcalf & Eddy, 2003c)
 - measured as Volatile Suspended Solids (VSS)
- Respiration = energy production

Sloughing/detachment a function of:

- Hydraulic shear
- Heterotrophic Endogenous Respiration occurs in inner layers.
- Nitrogen Bubbles from Denitrification

4

PERFORMANCE ENHANCEMENT OF BAM TREATMENT TRAINS BY INCORPORATING SLOUGHED BIOFILM CAPTURE


- Biomass is made of nutrients.
- Don't let biomass just go to the lake, GET THAT ADDITIONAL REMOVAL!
- Boost your BAM BMP TP removal by 20%!!!

Methodology

Experimental Design

3 types of media (1, 2, & 3) with 2 columns for each media; A, B

Get the Most BAM for your Buck! —Andrew C. Hood, PhD

Source Water

- Simulates stormwater that has prior particulate removal (baffle box, pond, etc.)
- Influent TSS was much lower for this research (3-4.75 mg/L)

Pollutant	NSQD Commercial	NSQD Highways and Freeways	NSQD Industrial	NSQD Institutional	NSQD Open Space	NSQD Residential	This Project: 22 minute EBCT	This Project: 220 minute EBCT
Orthophosphate (mg/L as P)	0.196	0.129	0.273	0.112	0.145	0.264	0.185	0.175
Total Phosphorus (mg/L as P)	0.329	0.398	0.427	0.201	0.392	0.451	0.237	0.206
TSS (mg/L)	119.481	140.766	152.967	144.670	261.948	126.206	4.75	3.0
TN (mg/L as N)	2.858	2.512	2.141	3.092	2.444	3.539	1.600	1.594

Experiment Operation

- Columns run for 8 months
 - Samples were collected during last 5 months

• Column Run types per week:

- Two unsampled, 2-hr duration events per week (22 minute EBCT)
- One, 2-hr sampling event per week (22 minute EBCT)
- One, 24-hr sampling event per week (220 minute EBCT)

Cumulative effluent samples

Samples were taken from the collection basins

Flow Duration (hours)	EBCT (minutes)	Hydraulic Load Rate assuming 2 ft BAM thickness (inches water / minute)
2	22	1.09
24	220	0.11

•

•

Results

Change in Total Phosphorus

- BAM #1 & #3 had lower TP removals during longer EBCT
 - P removal should INCREASE with EBCT!
- BAM #1 had highest TP Removal for both EBCTs

Approximate Flow Duration (hours)	EBCT (minutes)	Column Media #	Average Influent TP (mg/L as P)	Average Effluent TP (mg/L as P)	∆ TP (mg/L as P)	TP % Removal
		1	0.237	0.116	-0.122	51%
2	22	2	0.233	0.180	-0.053	23%
		3	0.233	0.130	-0.103	44%
24		1	0.206	0.116	-0.090	44%
	220	2	0.206	0.142	-0.064	31%
	0	3	0.206	0.179	-0.027	13%

•

Changes in Types of Phosphorus

<u>Greater DECREASE in SRP than TP for all BAM types during 220 minute EBCT</u>

• Bio-assimilation of SRP into biofilm \rightarrow Sloughed biofilm in effluent

Approximate Flow Duration (hours)	EBCT (minutes)	BAM #	Type of Phosphorus	Influent (mg/L as P)	Effluent (mg/L as P)	Δ (mg/L as P)	% Reduction								
			Total Phosphorus	0.237	0.116	-0.122	51%								
		1	SRP	0.185	0.082	-0.103	56%								
			Non-SRP Phosphorus	0.052	0.034	-0.019	36%								
			Total Phosphorus	0.233	0.180	-0.053	23%								
2	22	2	SRP	0.182	0.133	-0.049	27%								
			Non-SRP Phosphorus	0.051	0.047	-0.004	8%								
		3	Total Phosphorus	0.233	0.130	-0.103	44%								
			SRP	0.182	0.110	-0.072	40%								
			Non-SRP Phosphorus	0.051	0.020	-0.031	61%								
			Total Phosphorus	0.206	0.116	-0.090	44%								
		1	SRP	0.175	0.055	-0.120	69%								
		·	Non-SRP Phosphorus	0.031	0.061	0.030	-97%								
			Total Phosphorus	0.206	0.142	-0.064	31%								
24	220	2	SRP	0.175	0.107	-0.068	39%								
		2	Non-SRP Phosphorus	0.031	0.035	0.004	-13%								
			Total Phosphorus	0.206	0.179	-0.027	13%								
		3	SRP	0.175	0.136	-0.039	22%								
										3	Non-SRP Phosphorus	0.031	0.043	0.012	-39%

12

Phosphorous Filtration and Sorption **Transformations** and Removal Influent Non-SRP Non-SRP Effluent Non-SRP Bypass Phosphorus Phosphorus Phosphorus Influent Total Sloughing Biomass Effluent Total **Total Phosphorus** Phosphorus Growth Biomass Phosphorus Removal

- Phosphorus Influent SRP Legend Influent Removal Effluent
- IF: (Removed Influent Biomass) < (Sloughed Biofilm in Effluent)
 - Then: Net increase in stormwater biomass
- With increase in EBCT, there should be an increasing amount of biological activity, and thus an increase in sloughed biofilm in effluent.
 - Biomass measured as VSS
 - Depending on relative magnitude, this may be seen as a decrease in TSS removal as EBCT is increased

\\S[]

Heterotrophic Plate Count

Approximate Flow Duration (hours)	EBCT (minutes)	Media #	Median Influent HPC (CFU/mL)	Median Effluent HPC (CFU/mL)	Δ HPC (CFU/mL)	HPC % Increase
	22	1	3.86.E+05	4.28.E+05	4.18.E+04	11%
2		2	3.86.E+05	4.49.E+05	6.25.E+04	16%
		3	3.98.E+05	3.35.E+05	-6.25.E+04	-16%
	220	1	2.34.E+05	5.38.E+05	3.04.E+05	130%
24		2	2.34.E+05	5.09.E+05	2.75.E+05	117%
		3	2.34.E+05	5.14.E+05	2.80.E+05	120%

- Evidence of Sloughing Biofilm
 - All Increase, except BAM #3 during 22 minute EBCT
 - Higher increase during 220 minute EBCT
 - HPC increased with increased EBCT

TSS

Approximate Flow Duration (hours)	EBCT (minutes)	Column Media #	Median Influent TSS (mg/L)	Median Effluent TSS (mg/L)	∆ TSS (mg/L)	TSS % Removal
	22	1	4.75	1.75	-3.00	63%
2		2	4.75	2.50	-2.25	47%
		3	4.75	1.25	-3.50	74%
	24 220	1	3.00	2.25	-0.75	25%
24		2	3.00	1.75	-1.25	42%
		3	3.00	1.75	-1.25	42%

- Sorption and Filtration Removal Efficiencies <u>should</u> INCREASE with EBCT
- <u>Exact opposite occurred for ALL BAM types</u>
- Evidence of Sloughed Biofilm in Effluent

22 minute EBCT (2-hour Duration) vs 220 minute EBCT (24-hour Duration)

Why don't we see a greater decrease in SRP than TP for both the 22 minute and 220 minute EBCTs?

- Sloughed biomass, as P > Removal of Influent Non-SRP
- Longer EBCT= more time for biological processes
- CUMULATIVE SAMPLE TIME!
 - Biofilm Sloughing can be INTERMITTENT!
 - this is already known for wastewater trickling filters
 - Recall during 22 minute EBCT, both BAM #1 & BAM #2 had an increase in HPC.
 - bio-assimilation and sloughing are occurring during both EBCTs

٠

•

How much sloughed Biomass is leaving?

Approximate Flow Duration (hours)	EBCT (minutes)	BAM #	Type of Phosphorus	Influent (mg/L as P)	Effluent (mg/L as P)	Δ (mg/L as P)	% Reduction
			Total Phosphorus	0.237	0.116	-0.122	51%
2	22	1	SRP	0.185	0.082	-0.103	56%
			Non-SRP Phosphorus	0.052	0.034	-0.019	36%
24		1	Total Phosphorus	0.206	0.116	-0.090	44%
	220		SRP	0.175	0.055	-0.120	69%
	220		Non-SRP Phosphorus	0.031	0.061	0.030	-97%

- Use BAM #1 as an example since highest TP removal
- 22-minute EBCT achieves 36% reduction of Influent Non-SRP Phosphorus
 - Conservative: This assumes that no sloughed biomass is present in the effluent, which can not be true.
- Apply 36% removal of influent Non-SRP Phosphorus to 220-minute EBCT
 - Conservative: Removal by Filtration & Sorption should increase with EBCT.
- 220-minute EBCT experiences 97% increase in Non-SRP Phosphorus
- Sloughed Biomass in Effluent is categorized as Non-SRP Phosphorus

Sloughed Biomass in Effluent = (*Removed Influent Non-SRP Phosphorus*) + (*Net Increase in Non-SRP Phosphorus*)

Sloughed Biomass in Effluent = $36\% * \frac{0.031 \, mg \, Non - SRP \, as P}{L} + 97\% * \frac{0.031 \, mg \, Non - SRP \, P \, as P}{L} = \frac{0.041 \, mg \, Non - SRP \, as P}{L}$

Disproves common assumptions

For BAM #1, EBCT 220 minutes

- Sloughed Biomass in Effluent = 0.041 mg/L as P
- Decrease in SRP = 0.120 mg/L as P
- 34% of the decrease in SRP accounted for by sloughed biofilm in effluent

Disproves SRP Assumptions of:

- Decrease in SRP concentration = Removal
- Decrease in SRP is due predominantly to Sorption
- Commonly used BAM Lifespan calculation:
 - Decrease in Orthophosphate = Consumption of Sorption Capacity

•

•

Design and Monitoring Implications

Implications to Sampling protocols & Advertised Removal Efficiencies

Intermittent Biofilm sloughing = Grab samples aren't representative

- Sampling During Sloughing event
 - Have you ever had a BAM filter Grab sampling indicate an increase in TP?
- Sampling Between Sloughing Events
 - BAM TP removal efficiencies might be OVERSTATED
- Composite Sampling for BAM filters should be considered

٠

٠

•

•

Implications to Design: Additional TP Removal Potential

- TP is leaving the system as sloughed biomass
 - Categorized as non-SRP Phosphorus

•

٠

- Use BAM #1, 220 minute EBCT, as example
- Assume all net increase in non-SRP Phosphorus can be captured
- Either an increase in TP removal **OR** now getting what BAM specifications originally claimed

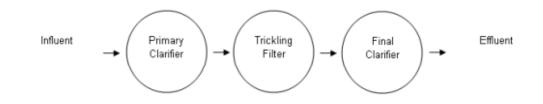
Type of Phosphorus	Influent (mg/L as P)	Effluent (mg/L as P)	Δ (mg/L as P)	Measured% Removal	Sloughed Biomass in Effluent (mg/L as P)	Total Potential TP removal (mg/L as P)	Total Potential % Removal	Additional % Removal Achieved
Total Phosphorus	0.206	0.116	-0.090	44%	0.041	0.131	64%	20%

Implications to Design: Additional TN Removal Potential

• Cell biomass is commonly represented by $C_{12}H_{87}O_{23}N_{12}P$ (Metcalf & Eddy, 2003c)

5.43 mg N mg P

- Use BAM #1, 220 minute EBCT, as example:
 - Recall Sloughed Biomass in Effluent = 0.0412 mg/L as P
 - Thus, Sloughed Biomass in Effluent = 0.224 mg/L as N
 - Assume all sloughed biomass in effluent can be captured
 - Additional 14% TN Removal from treatment train influent.

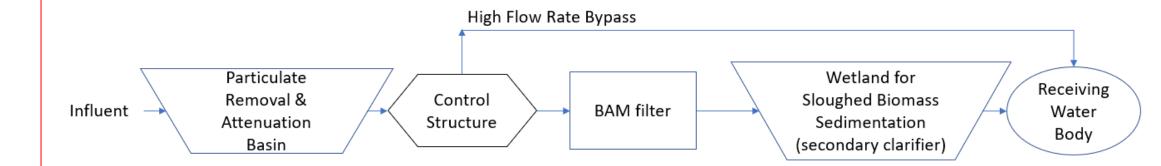

Is this a One-Off? NOPE!

- Downflow BAM filter project
- Minimum Additional TP Removal:
 - Calculation assumes filter is not removing ANY non-SRP TP from the influent.

Date	ΔTP (ug/L as P)	Δ SRP (ug/L as P)	Minimum Sloughed Biomass in Effluent (ug/L as P)	Minimum Additional TP Removal efficiency if sloughed biofilm captured	Observed TP Removal Efficiency	Minimum Potential TP Removal Efficiency
8/29/2011	-142	-153	11.0	6%	77%	83%
9/7/2011	-145	-173	28.0	14%	73%	87%
9/12/2011	-135	-177	42.0	20%	66%	86%
9/21/2011	-138	-164	26.0	13%	70%	83%
9/26/2011	-144	-156	12.0	6%	73%	79%
10/3/211	-139	-192.1	53.1	26%	68%	94%
Median	-140.5	-168.5	27.0	14%	71%	85%

How to capture the sloughed Biomass?

- Wastewater Trickling Filters
 - secondary clarifiers are placed after trickling filters to capture sloughed biomass.

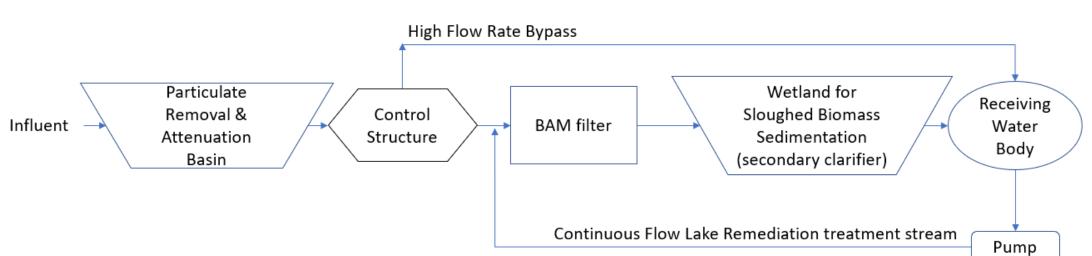


Sizing the secondary clarifier

- Use Wastewater design specifications as a reference
- Surface Area:
 - Design overflow rates (design settling velocities) for wastewater secondary clarifiers following trickling filters
 - For Average flow: 16-24.5 m/day (EPA, 1975; Metcalf & Eddy, 2003a, e; Reynolds, 1995; River, 2004)
 - Use the lower end since wastewater secondary clarifiers likely will have more ideal settling

Conceptual Design

- Wetland as secondary clarifier
 - Sloughed Biofilm sedimentation
 - Additional Nitrogen Removal Potential: Denitrification


•

•

•

Even <u>MORE</u> BAM for YOUR BUCK: Don't Let Your BAM Filter Just Sit There & Be LAZY

- Add a Pump for Lake Remediation
- Constant food = Happy Microbes = Higher Biological Performance
- BAM BMPs aren't cheap, don't let it sit there
- Annual TN & TP Removal 1 = Lifetime Cost per pound removed

Conclusions & Takeaways

- Sampling:
 - Grab samples may lead to overstating removal efficiencies
 - Composite samples
 - Add Volatile Suspended Solids (VSS) to the parameters
 - VSS is used as a measure of the biomass component of TSS
 - An increase in VSS indicates the addition of sloughed biofilm to the water

• Design Implications:

- Decrease in SRP does NOT necessarily mean removal.
 - BAM lifespan may be significantly longer than predicted by commonly used method of Decrease in Orthophosphate = Consumption of Sorption Capacity.
- Sloughed Biomass exiting filter is <u>significant</u>
- Capturing Sloughed Biofilm can greatly increase BAM system TP & TN removal efficiencies
 - Or maybe get what was advertised.... If specs are based on grab samples
- Consider incorporating Lake Remediation

Questions?

wsp

Andrew Hood, PhD Senior Consultant Water Resources

andrew.hood@wsp.com office: 863-868-1714 cell: 772-528-3720 WSP USA 550 Northlake Blvd. Altamonte Springs, FL 32701

wsp.com

