

Offline Bioreactors For Nutrient Reduction In Fluvial Systems

Shane Williams, Ph.D, P.E. and Chris Fagerstrom, P.E.

> Outline

- 1. Watershed Background
- 2. Project Background
- 3. Project Funding
- 4. Treatment Wetland Concepts
- 5. Little Hatchet Creek Bioreactor
- 6. Monitoring Results
- 7. Next Steps

Newnans Lake

- Shallow naturally eutrophic lake.
- One of the four large lakes in eastern Alachua County.
- Water quality is declining. Lake is impaired for TN and TP. The lake is dominated by cyanobacteria and has become turbid and green.
- Tributaries to the lake include Hatchet
 Creek and Little Hatchet Creek, which enter
 the lake through Gum Root Swamp.
- Part of the Orange Creek BMAP.

Newnans Lake from East

Newnans Lake Required TP Reductions and Credits (lbs-TP/yr) by Jurisdiction

Jurisdiction	Total Developed Land Use Reduction	First 5-Year 50 % Developed Land Use Reduction	Education Credit	Project Credits	Remaining Developed Land Use Reduction with a Target Date of 2023	Second 5- Year 50 % Developed Land Use Reduction	Total Septic System Reduction with a Target Date of 2028	Total Reduction to be Achieved with a Target Date of 2028*
Alachua County	465	233	33	42	158	232	198	588
FDOT, District 2	93	47	4	525	-483	46	0	0
Gainesville	461	231	33	259	49	230	16	185
Waldo	27	14	1	0	13	13	0	26
Total	1,046	525	71	826		521	214	799

From: Orange Creek BMAP Amendment

Water Quality in Little Hatchet Creek (LHC)

- TP concentration in LHC averaged 0.25 mg/L, mostly SRP.
- Criteria for Peninsula Nutrient Region streams is 0.12 mg/L.

Phosphorus Source: Exposed Hawthorn Group

TN and TP Loads

Before Impacted Segment

Swamp				
TN (lbs/yr)	TP (lbs/yr)			
14,390	1,226			

> Project Background

- Newnans Lake Initiative, Phase 1 investigated nutrient sources and evaluated projects.
- The concept of a reactive weir pilot project on LHC was one of the top-ranked recommendations.
- Originally proposed as either a single weir pilot project or three weirs.

Alachua County Environmental Protection Department Gainesville, Florida

December 2017

Complex Challenges . . . PRACTICAL SOLUTIONS

> Project Background

Newnans Lake Improvement Initiative -Phase I

Project categories:

- Water quality improvement projects
 - Sedimentation basins
 - Offline bioreactor
 - Treatment wetland
- Restoration Projects
 - Restore stream cross-section
 - Armor stream channel

> Project Funding

- \$250,000 from Florida Department of Environmental Protection
 - Hatchet Creek Assessment
 - Design and construction of first weir
- \$65,000 from St. Johns River Water Management District
 - Allowed for construction of second weir
- \$3,000 from Stormwater Assessment
 - Design of second weir

- Traditional treatment wetlands can offer a wide range of benefits
 - Wetland functions, values
- Not a "one size fits all" solution to water quality issues
 - Available land/area, required area for treatment
 - Cost
 - Design/engineering constraints
- Approach: apply treatment wetland concepts to modified designs

Source: Modified from Bays, 2020

Nitrification/denitrification

- Provide carbon source for microbes
- Provide aerobic and anaerobic environment for various microbes

Adsorption and precipitation

• Aluminum (AlPO₄ (s)), calcium (Ca₅(OH)(PO₄)₃ or Ca₃(PO₄)₂), iron (FePO₄ (s))

Applied Treatment Processes: Denitrification in Bioreactors

- Benefits
 - Can be very cost effective
 - Relatively easy to design
 - Little maintenance required
- Constraints
 - Media can clog as a result of biofilms or organic matter accumulation
 - Flow rates and hydrology
 - Media replacement (but is relatively simple)

- Upflow bioreactor with alternative media to reduce TN and TP loading to Newnans Lake
 - High P
- Treat baseflow

Bioreactor Cross-Section

Construction Cost

- Design build contract \$172,00
- Cost saving measures
 - Multiple construction quotes
 - Right sizing of bioreactors to meet the project budget
 - Media selection relatively inexpensive while meeting the project objective
- Cost per pound of TP removed
 - Based on limited data ~\$2,000/Lb

Monitoring Results

- Four Sampling Events
 - November 2020 March 2021
- Phosphorus Removal
 - Inflow concentration range: 0.19-0.24 mg/L
 - Upstream Bioreactor: 4%-48%
 - Downstream Bioreactor: -5%-41%

Bioreactor	11/19/2020	12/3/2020	12/10/202	3/2/2021
Upstream	48%	11%	4%	20%
Downstream	41%	6%	13%	-5%

- Discharge velocity and flow rate
 - Upstream Bioreactor: 0.8-1.5 ft/s, 0.3-0.5 cfs
 - Downstream Bioreactor: 2.7-3.8 ft/s, 0.9 -1.3 cfs

Next Steps

- The County's final report to FDEP is due at the end of July, but the County intends to continue monitoring at least through the end of 2021.
- The pilot period runs through the end of the year at which time a decision will be made whether to remove the weirs or not.

> Questions

Shane Williams, Ph.D., P.E. Chris Fagerstrom, P.E.

<u>eswilliams@alachuacounty.us</u> <u>cfagerstrom@ectinc.com</u>

