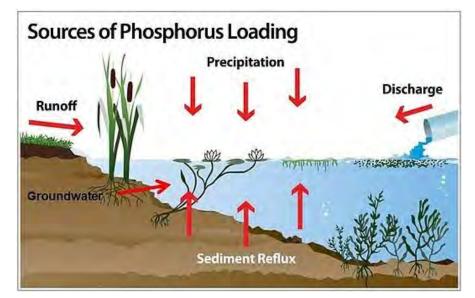


> Characterizing Lake Sediment Variability for Cost-effective TMDL Implementation

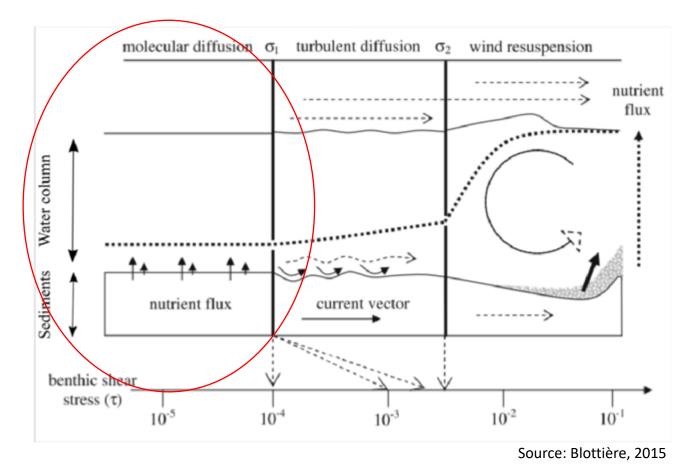
Sara Phelps, Ph.D. and Robert Johnson, P.E.



> Outline

- 1. The Creature from the Black Lagoon
- 2. Project Background
- 3. Nutrient Removal Study
- 4. Data as a Tool
- 5. Applications

> The Creature from the Black Lagoon OR Internal Nutrient Loads in Sediments



Source: SOLITUDE, 2021

> The Creature from the Black Lagoon OR Internal Nutrient Loads in Sediments

ECT

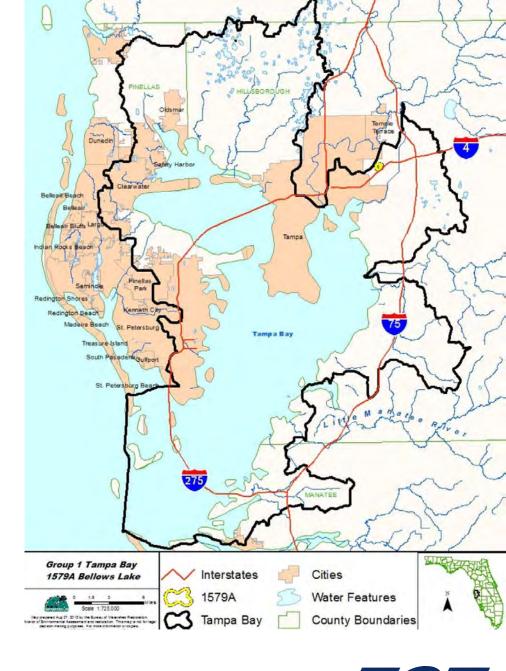
FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION Division of Environmental Assessment and Restoration, Bureau of Watershed Restoration SOUTHWEST DISTRICT • TAMPA BAY BASIN

TMDL Report

Nutrients For Bellows Lake (WBID 1579A)

Douglas Gilbert

Table 6.1. TMDL Components for Nutrients and BOD₅ in East Lake (WBID 1579A)


Parameter	WLA Wastewater	WLA NPDES Stormwater (% reduction)	LA (% reduction)	MOS	
Total Nitrogen	N/A	30.5	30.5	Implicit	
Total Phosphorus	N/A	33.3	33.3	Implicit	
BOD ₅	N/A	63.3	63.3	Implicit	

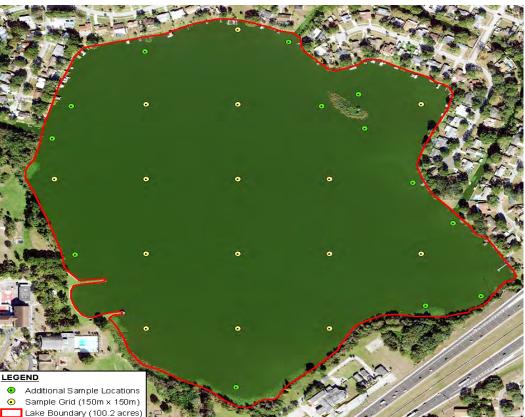
N/A - Not applicable.

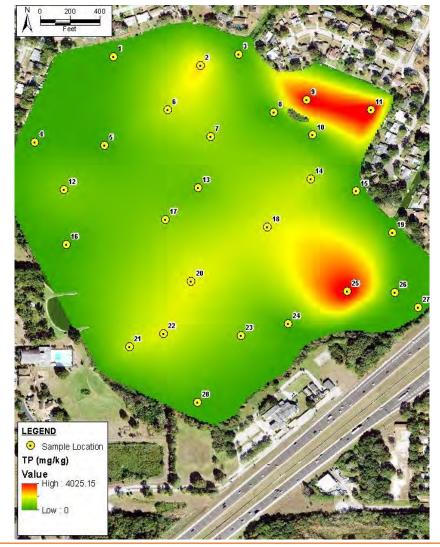
FLUCCs Code	Land Use	Modified WBID 1579 Acreage	Modified WBID 1579 % Acreage 1.6%	
1200	Residential Medium Density	10.7		
1300	Residential High Density	111.5	17.0%	
1400	Commercial And Services	143.8	22.0%	
1500	Industrial	130.4	19.9%	
1700	Institutional	65.5	10.0%	
1900	Open Land	19.4	3.0%	
2100	Cropland And Pastureland	67.0	10.2%	
4340	Hardwood Conifer Mixed	5.2	0.8%	
5200	Lakes	4.2	0.6%	
5300	Reservoirs	37.5	5.7%	
6410	Freshwater Marshes	2.1	0.3%	
6430	Wet Prairies	3.4	0.5%	
6440	Emergent Aquatic Vegetation	1.6	0.2%	
8100	Transportation	52.2	8.0%	
	Total	654.4	100%	

	TN (mg/L)	TP (mg/L)	BOD
Median	2.01	0.083	5.45
Criteria	1.4	0.055	2.00

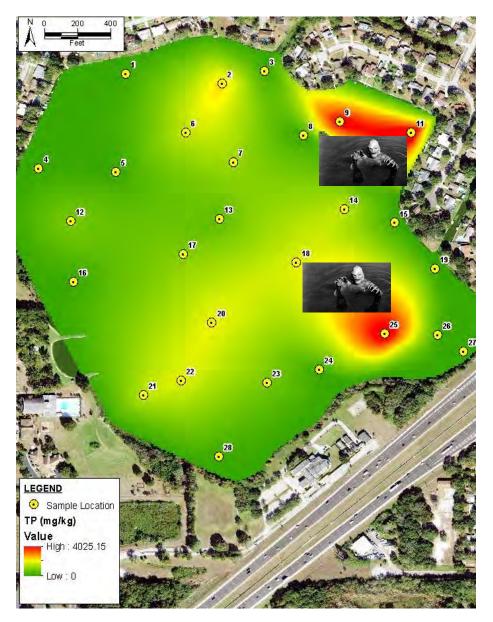
GT

Existing Lake Conditions


Existing Lake Conditions


Muck Depth

Sediment Grab Sampling

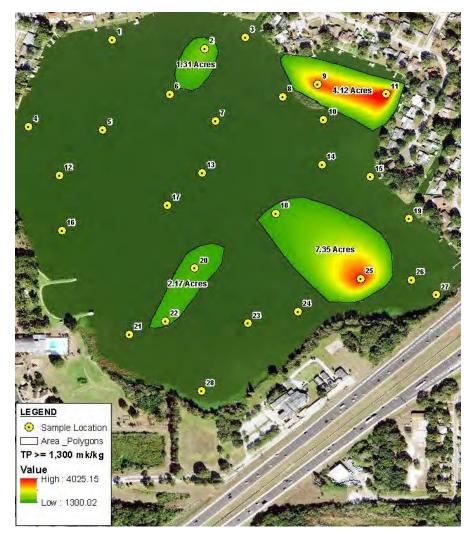


Lake Sediment Concentrations

- Source of P to lake? Probably, but need to look at flux
- Can we use targeted management? Seems likely (but need to look at flux)
- Where do we sample for flux? Where high TP is located (not necessarily deepest sediments)

Lake Sediment Flux

Sample Location	Sample ID	TP Flux (mg m ⁻² day ⁻¹)
Aerobic		
S-2	2-1	1.20
S-5	5-1	0.96
S-9	9-1	9.81
S-17	17-1	1.17
S-20	20-1	7.66
S-25	25-1	17.67




ECT

East Lake Sediment Sampling						
Geotechni	cal Results					
Location	% Organics	USCS Soil Classification				
S-1	1.3	SP, Poorly Graded Sand, Trace organics (Brown)				
S-2	30.3	PT, Muck with Sand and Silt (Brown)				
S-3	0.8	SP, Poorly Graded Sand, (Brown)				
S-4	0.8	SP, Poorly Graded Sand, (Brown)				
S-5	0.6	SP, Poorly Graded Sand, (Brown)				
S-6	28.9	PT, Muck with Sand and Silt (Brown)				
S-7	31	PT, Muck with Sand and Silt (Brown)				
S-8	0.42	SP, Poorly Graded Sand, (Brown)				
S-9	53.9	PT, Muck with Sand and Silt (Brown)				
S-10	0.7	SP, Poorly Graded Sand, (Brown)				
S-11	46.6	PT, Muck with Sand and Silt (Black)				
S-12	23.3	PT, Muck with Sand and Silt (Black)				
S-13	35.3	PT, Muck with Sand and Silt (Black)				
S-14	38.6	PT, Muck with Sand and Silt (Black)				
S-15	1.03	SP, Poorly Graded Sand, Trace organics (Brown)				
S-16	0.41	SP, Poorly Graded Sand, (Brown)				
S-17	36.6	PT, Muck with Sand and Silt (Brown)				
S-18	36.1	PT, Muck with Sand and Silt (Black)				
S-19	0.9	SP, Poorly Graded Sand, (Brown)				
S-20	37.8	PT, Muck with Sand and Silt (Brown)				
S-21	40.7	PT, Muck with Sand and Silt (Brown)				
S-22	33.9	PT, Muck with Sand and Silt (Brown)				
S-23	42.0	PT, Muck with Sand and Silt (Brown)				
S-24	1.5	SP, Poorly Graded Sand, Trace organics (Brown)				
S-25	41.8	PT, Muck with Sand and Silt (Black)				
S-26	1.5	SP, Poorly Graded Sand, Trace organics (Brown)				
S-27	1.3	SP, Poorly Graded Sand, Trace organics (Brown)				
S-28	1.0	SP, Poorly Graded Sand, Trace organics (Brown)				
	Muck with or	ganics				

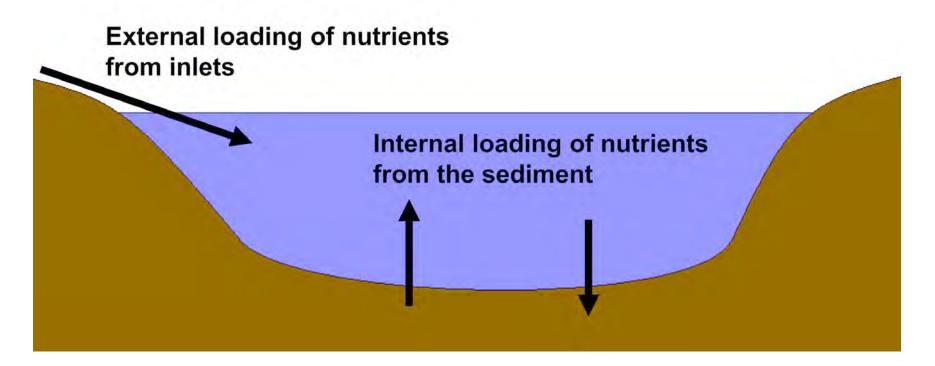
ECT

EC7

> Data as a Tool

Management Option	TP Load Removal (kg/yr)	% of Required Load Reduction	Estimated Dredge Volume (CY)	Estimated Cost (\$)	\$/kg TP	TP Load Removal (lbs/yr)	\$/lb TP
Dredge Area 1 only	1.42	0.30	2,792.2	\$223,376	\$157,022	3.14	\$71,244
Dredge Area 2 only	56.54	11.96	6,559.5	\$524,760	\$9,282	124.61	\$4,211
Dredge Area 3 only	159.19	33.67	25,061.9	\$2,004,952	\$12,595	350.86	\$5,714
Dredge Area 3R only	97.60	20.64	16,108.2	\$1,288,656	\$13,203	215.11	\$5,991
Dredge Area 4 only	4.53	0.96	2,444.2	\$195,536	\$43,179	9.98	\$19,591
Dredge Area 2 and 3	215.73	45.62	31,621.4	\$2,529,712	\$11,726	475.46	\$5,321
Dredge all Areas 1-4	221.68	46.88	36,857.8	\$2,948,624	\$13,301	488.58	\$6 <i>,</i> 035
Dredge expanded Areas 1-4 + expanded perimeters	287.29	60.76	64307.47	\$5,144,597	\$17,907	798.52	\$6,443

Which objective is most important: % required load reduction, cost, or load removal?


> Data as a Tool

Site Location	East Lake	Standards				S-2	S-9	S-11	S-18	S-20	S-25
Analyte	Method	Units	Residential	Commercial	Groundwater Leachability	Result	Result	Result	Result	Result	Result
ARSENIC	EPA 6010	mg/kg	2.1	12	N/A	7	7.9	10	46	17	8
BARIUM	EPA 6010	mg/kg	120	130000	1600	22	19	27	54	47	43
CADMIUM	EPA 6010	mg/kg	82	1700	7.5	1.5	1.5	1.8	2	2.2	2.1
CHROMIUM	EPA 6010	mg/kg	210	470	38	29	28	35	23	26	42
LEAD	EPA 6010	mg/kg	400	1400	N/A	77	75	89	140	260	120
MERCURY	EPA 7471	mg/kg	3	17	2.1	0.24	0.31	0.3	0.29	0.34	0.45
SELENIUM	EPA 6010	mg/kg	440	11000	5.2	14	16	20	8.3	11	14
SILVER	EPA 6010	mg/kg	410	8200	17	2.8	3.1	4.1	1.7	2.1	2.8

> Data as a Tool

Use in Nutrient Budgets

Accounts for about 1/3 of the unknown load

> Applications

Cost Savings Engineering

Targeted dredging

TMDLs Credit allocation

Internal load contribution

BMAP development

Other Fluxes Metals

Contaminants

Evaluate Treatments

e.g. Phoslock

Aluminum, calcium, or clay amendments

Application rates

-

Efficacy

> Questions?

Sara Phelps, Ph.D.sphelps@ectinc.comRobert Johnson, P.E.rjohnson@ectinc.com

