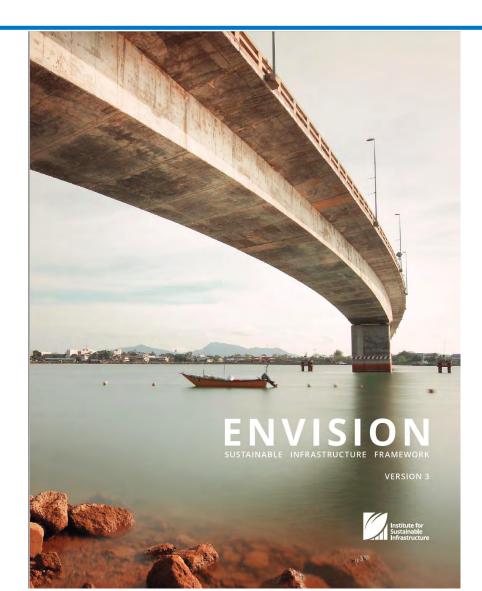
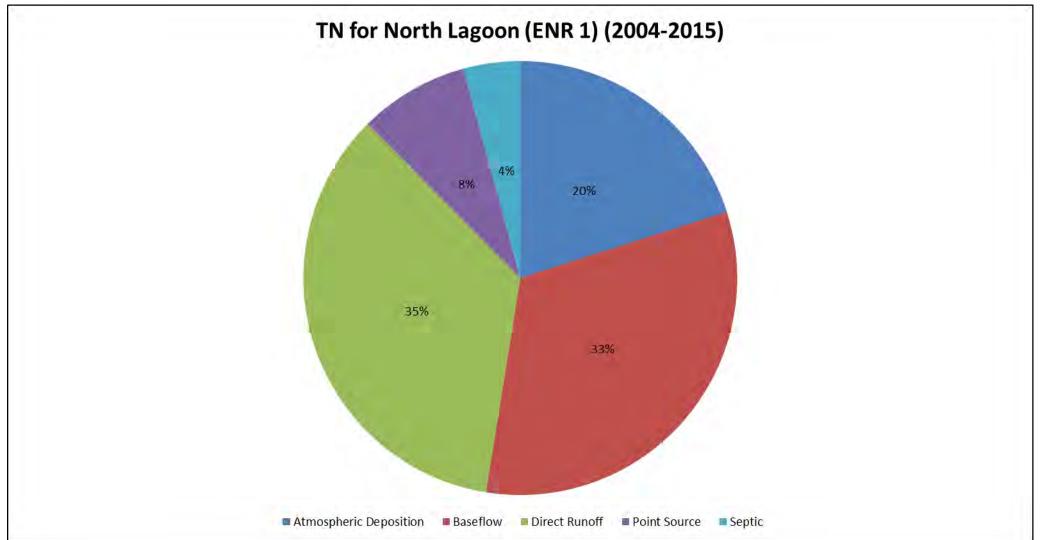


FSA 2020 Annual Conference Pre-Conference Session

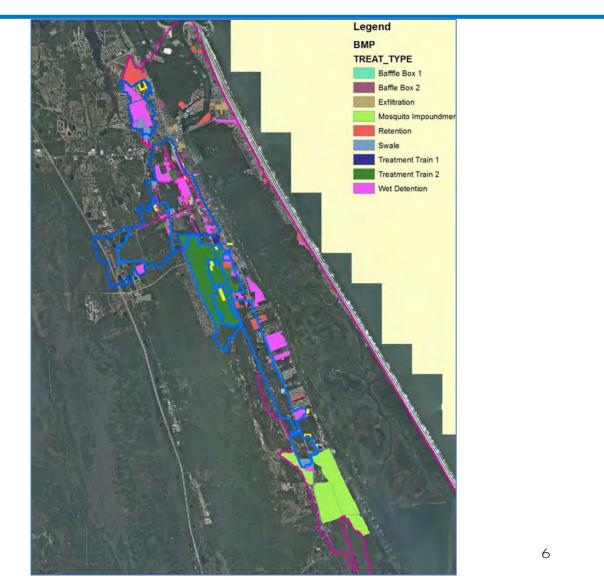

Getting Maximum Use of Your Stormwater BMPs

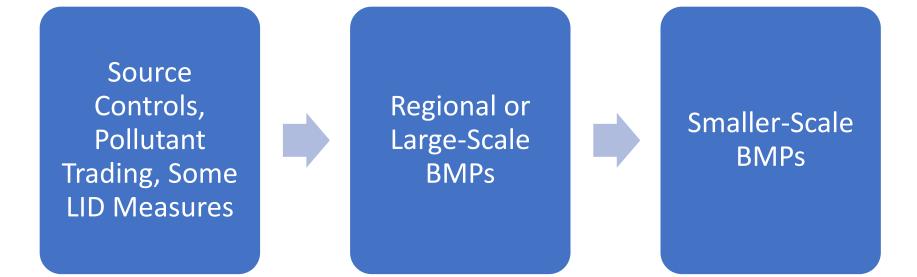
Existing Frameworks

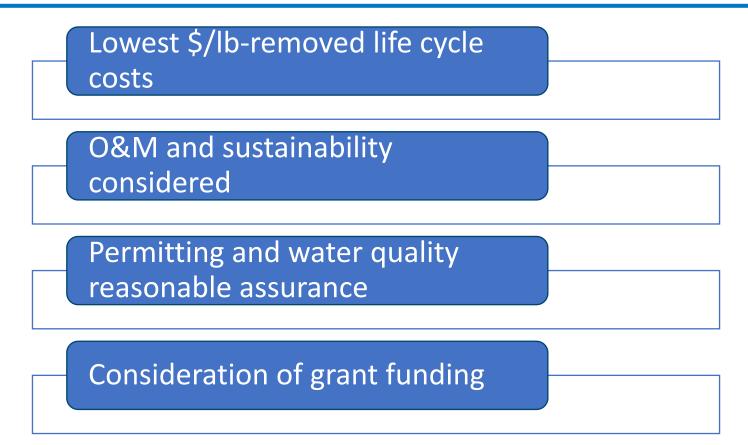

ENVISION POINTS TABLE Improved Enhanced Superior Conserving Restorative Maximum Points QL1.1 Improve Community Quality of Life OL1.2 Enhance Public Health & Safety 16 20 QL1.3 Improve Construction Safety 14 Wellbeing OL1.4 Minimize Noise & Vibration 10 1 QL1.5 Minimize Light Pollution 88 1 10 **QL1.6** Minimize Construction Impacts 1 4 200 OL2.1 Improve Community Mobility 14 1 Mobility QL2.2 Encourage Sustainable Transportation 16 QL2.3 Improve Access & Wayfinding 1 14 **Quality of Life** QL3.1 Advance Equity & Social Justice 14 18 0L3.2 Preserve Historic & Cultural Resources 18 -Community QL3.3 Enhance Views & Local Character 14 1 QL3.4 Enhance Public Space & Amenities 14 1 LD1.1 Provide Effective Leadership & Commitment -LD1.2 Foster Collaboration & Teamwork 18 -Collaboration LD1.3 Provide for Stakeholder Involvement 14 18 3 LD1.4 Pursue Byproduct Synergies 14 18 3 ~2 LD2.1 Establish a Sustainability Management Plan 4 18 182 LD2.2 Plan for Sustainable Communities 4 16 Planning LD2.3 Plan for Long-Term Monitoring & Maintenance LD2.4 Plan for End-of-Life 14 Leadership LD3.1 Stimulate Economic Prosperity & Development Economy LD3.2 Develop Local Skills & Capabilities 4 16 LD3.3 Conduct a Life-Cycle Economic Evaluation 5 10 14 RA1.1 Support Sustainable Procurement Practices 2 RA1.2 Use Recycled Materials 4 0 16 Materials 14 RA1.3 Reduce Operational Waste 4 10 RA1.4 Reduce Construction Waste 4 10 £3 RA1.5 Balance Earthwork On Site 4 6 8 RA2.1 Reduce Operational Energy Consumption 10 6 196 RA2.2 Reduce Construction Energy Consumption 4 2 Energy RA2.3 Use Renewable Energy 10 15 24 5 Resource RA2.4 Commission & Monitor Energy Systems 34 2 6 Allocation RA3.1 Preserve Water Resources 0 2 RA3.2 Reduce Operational Water Consumption 4 9 13 Water RA3.3 Reduce Construction Water Consumption 5 -RA3.4 Monitor Water Systems NW1.1 Preserve Sites of High Ecological Value 16 NW1.2 Provide Wetland & Surface Water Buffers 10 16 20 Siting NW1.3 Preserve Prime Farmland 16 NW1.4 Preserve Undeveloped Land 18 3 24 NW2.1 Reclaim Brownfields 11 19 13 16 22 ()NW2.2 Manage Stormwater 4 24 onservation 232 NW2.3 Reduce Pesticide & Fertilizer Impacts NW2.4 Protect Surface & Groundwater Quality 14 9 20 NW3.1 Enhance Functional Habitats 15 18 9 Natural World NW3.2 Enhance Wetland & Surface Water Functions 18 3 17 20 Ecology NW3.3 Maintain Floodplain Functions 1 11 14 NW3.4 Control Invasive Species 1 6 9 12 NW3.5 Protect Soil Health 4 8 CR1.1 Reduce Net Embodied Carbon 5 Emissions CR1.2 Reduce Greenhouse Gas Emissions 8 13 18 CR1.3 Reduce Air Pollutant Emissions 4 14 18 CR2.1 Avoid Unsuitable Development 3 6 190 CR2.2 Assess Climate Change Vulnerability 8 14 CR2.3 Evaluate Risk and Resilience 11 18 24 Resilience **Climate and** CR2.4 Establish Resilience Goals and Strategies 14 Resilience CR2.5 Maximize Resilience CR2.6 Improve Infrastructure Integration 13 Maximum TOTAL Points 1.000

Goal-based Strategy

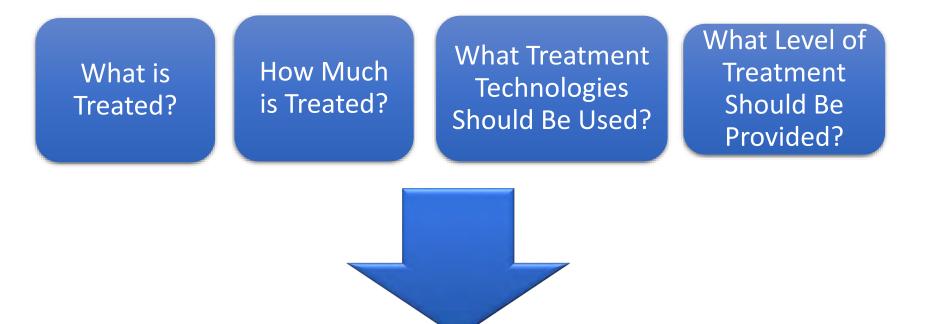
WBID		W	/LA	LA (lbs/yr) ²		TMDL	Percent Reduction ²
	Parameter	Wastewater (lbs/yr) ¹	NPDES Stormwater ²		MOS	(lbs/yr) ²	
2720A	TN	41,003	45% reduction	215,319	Implicit	256,322	45%



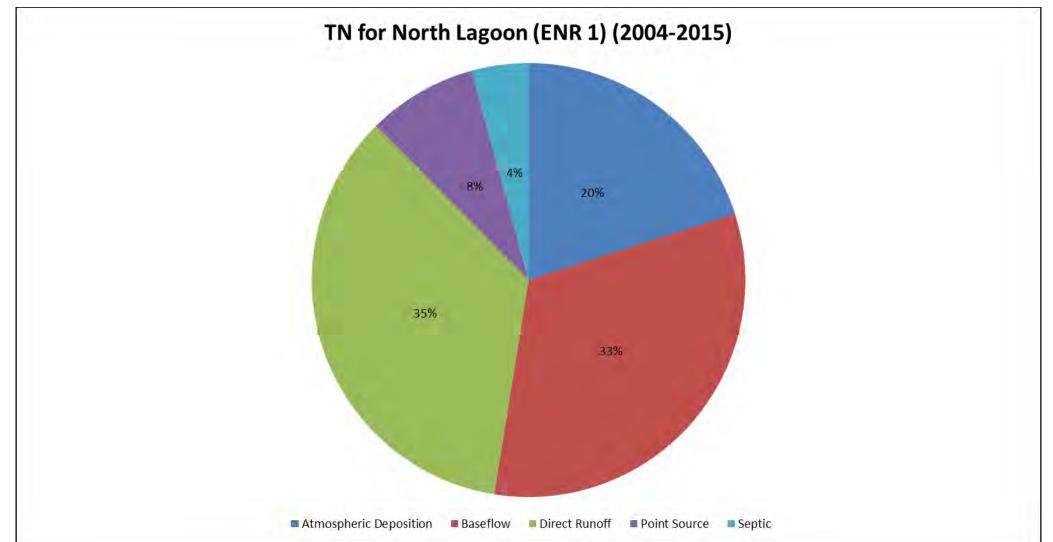

Strategy - Understanding Pollutant Sources


Strategy - Identifying Existing Treatment and Opportunities

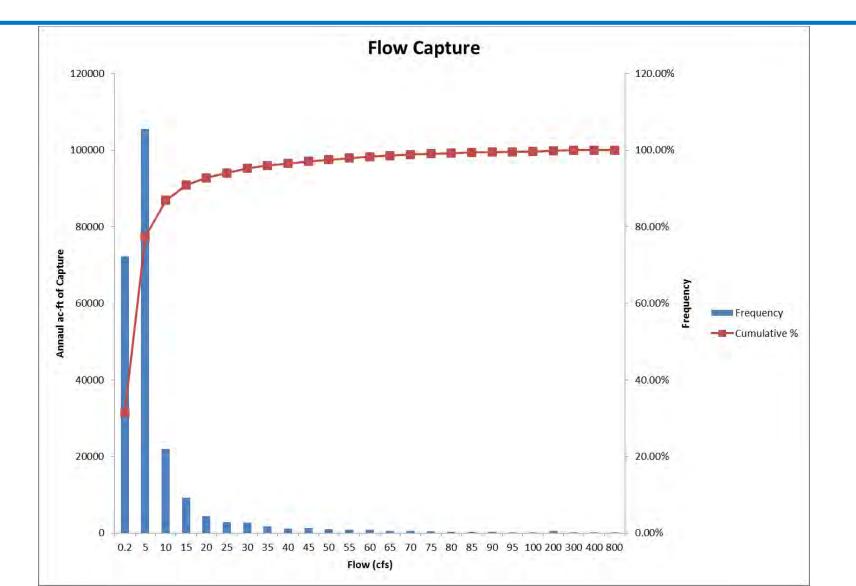
- What is currently being treated?
- What land could be available?
- Where are the regional opportunities?
- Retrofit existing projects?



Planning of Individual BMPs


Awareness of multiple purposes

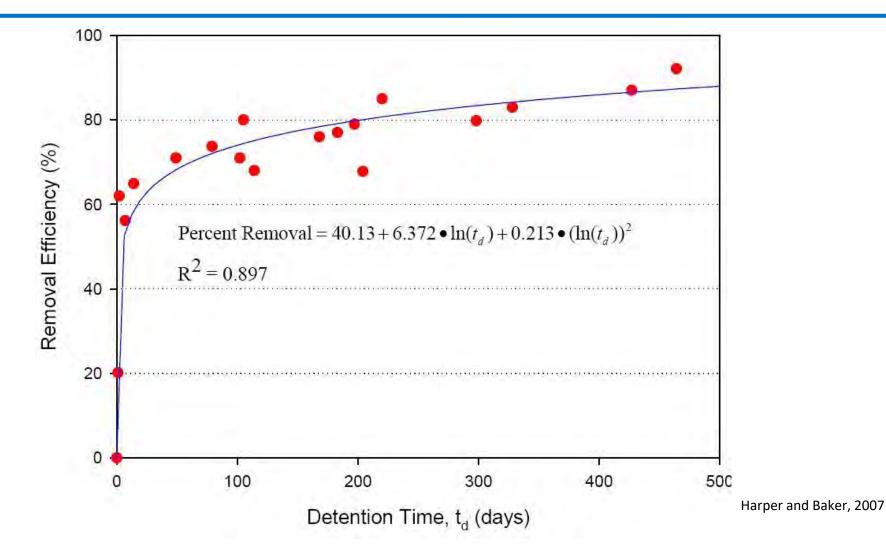
Optimizing BMP Design



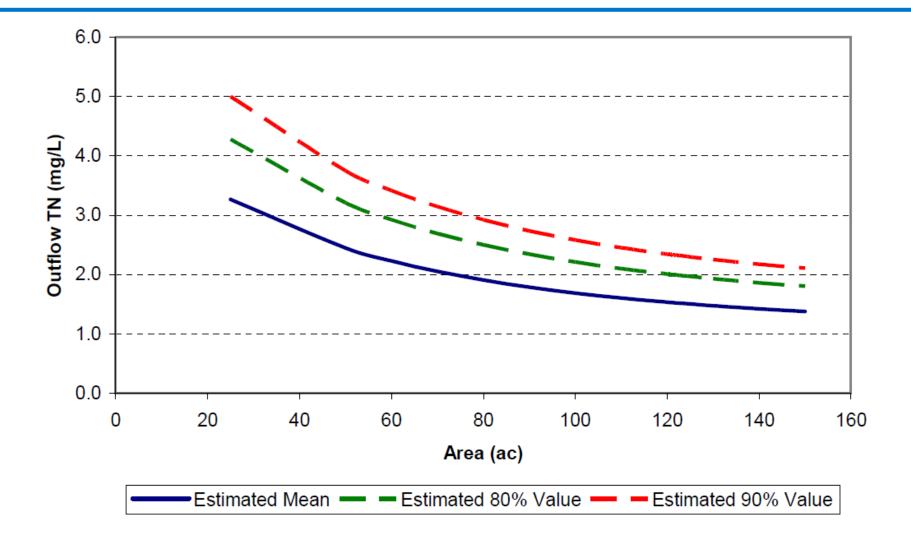
Site-Specific Optimization

What is Treated?

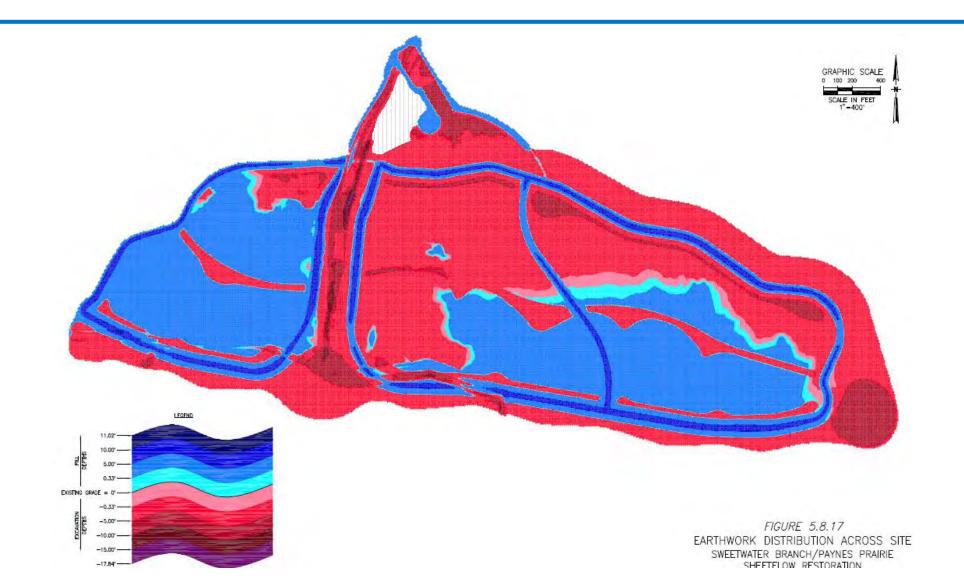
How Much is Treated?



11


What Treatment Technologies Should Be Used?

What Level of Treatment Should Be Provided?


What Level of Treatment Should Be Provided?

Site-Specific Optimization

Site-Specific Optimization

Hydrology: Most rainfall events are 1-inch or less Manage common rain events for WQ improvement

Rainfall Event Range (inches)	Mean Rainfall Depth (inches)	Mean Rainfall Duration (hours)	Fraction of Annual Rain Events	Number of Annual Events in Range
0.00-0.10	0.041	1.203	0.427	56.683
0.11-0.20	0.152	2.393	0.142	18.866
0.21-0.30	0.252	3.073	0.080	10.590
0.31-0.40	0.353	3.371	0.055	7.312
0.41-0.50	0.456	3.702	0.048	6.325
0.51-1.00	0.713	4.379	0.129	17.102 (117)
1.01-1.50	1.221	5.758	0.051	6.733
1.51-2.0	1.726	7.852	0.024	3.145
2.01-2.50	2.271	8.090	0.011	1.470
2.51-3.00	2.704	10.675	0.006	0.726
3.01-3.50	3.246	9.978	0.003	0.391
3.51-4.00	3.667	13.362	0.002	0.260
4.01-4.50	4.216	15.638	0.001	0.149
4.51-5.00	4.796	17.482	0.000	0.056
5.01-6.00	5.454	23.303	0.001	0.167
6.01-7.00	6.470	40.500	0.000	0.019
7.01-8.00	7.900	31.500	0.000	0.019
8.01-9.00	8.190	3.500	0.000	0.019
>9.00	10.675	46.250	0.001	0.075

Minimal runoff from pervious areas and N-DCLA Even in HSG 'D' soils – DCLA is the driver

	- 54.1	Runoff depth for curve number of—											-
Rainfall	40	45	50	55	60	65	70	75	80	85	90	95	98
1.7							inches					10 to 10 10	
1.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.08	0.17	0.32	0.56	0.79
1.2	.00	.00	.00	.00	.00	.00	.03	.07	.15	.27	.46	.74	.99
1.4	.00	.00	.00	.00	.00	.02	.06	.13	.24	.39	.61	.92	1.18
1.6	.00	.00	.00	.00	.01	.05	.11	.20	.34	.52	.76	1.11	1.38
1.8	.00	.00	.00	.00	.03	.09	.17	.29	.44	.65	.93	1.29	1.58
2.0	.00	.00	.00	.02	.06	.14	.24	.38	.56	.80	1.09	1.48	1.77
2.5	.00	.00	.02	.08	.17	.30	.46	.65	.89	1.18	1.53	1.96	2.27
3.0	.00	.02	.09	.19	.33	.51	.71	.96	1.25	1.59	1.98	2.45	2.77

Which Pollutants? Which Forms?

- Sediment
- Biochemical oxygen demand
- Pathogens
- Phosphorus: SRP, OP, TP
- Nitrogen: TKN = Org N + NH3; NOX = NO2 + NO3

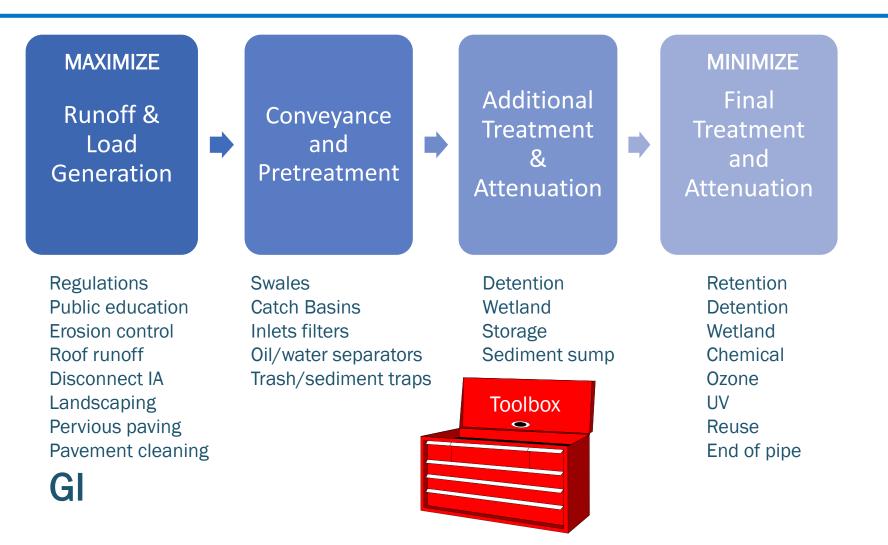
TN = TKN + NOX

(Only some forms of nutrients are bioavailable)

- Metals
- Toxic compounds

Organic or inorganic, dissolved or particulate

BMP Selection Criteria


- Land area availability/ownership/access
- Site characteristics
- Regulatory requirements and constraints
- Mass pollutant load reduction/environmental benefits
- Construction/Annual O&M/Life cycle cost
- Maintenance staff availability/sophistication
- Decreased maintenance of problem areas
- Public acceptance
- Non-engineering/cost factors
- Funding partners/Grant potential
- Piggyback on other planned capital improvements
- Regional vs. many smaller systems

Evaluation and Selection of Projects

- Identify primary and secondary pollutants
- Determine min and max influent pollutant concentrations and stormwater flow rates
- Determine desired removal efficiencies
- Identify available land area
- Identify effective treatment train components
- Evaluate potential treatment trains based on BMP Selection Criteria Factors
- Implement best solution keep pushing forward, you will have obstacles!

Table 5-9. Evaluation Criteria and Option Scoring for the Lake Eva Project									
Selection Criteria Pri		Description	Weight	Option 1 Score	Option 2 Score	Option 1 Points	Option 2 Points		
Improve Lake Eva Water Quality	1	Achieve Lake Water Quality Improvement for Key Parameters including Total Phosphorus and Chlorophyll-a	15	6	9	90	135		
Address Lake Eva Low Water Level Concerns	2	Address Regulatory Requirements for Maintaining MFL in Lake Eva	12	6	9	72	108		
Meet Regional Integrated Water Resources Needs	3	Follow Central Florida Water Initiative (CFWI) guidelines, use regional approach to solvingmulti-jurisdictional "One Water" needs	10	7	9	70	90		
Provide Groundwater Recharge and Water Supply Credits	3	Infiltrate "Excess" Water into project area groundwater system with the goal of generating water supply credits	10	6	6	60	60		
Minimize Need for Land Acquisition and Easements	4	Maximize the use of existing public lands and easements for project improvements and minimize the need to acquire additional private land or easements	9	8	7	72	63		
Utilize ExistingInfrastructure and Natural Conveyances	4	Maximize natural conveyance and maintain existing drainage system infrastructure is such a way that it's compatible with maximizing natural conveyance.	9	8	8	72	72		
Public / Stakeholder Acceptance	5	Consensus of acceptance by Stakeholders, Residences, and Businesses	7	7	8	49	56		
Life-Cycle Cost	6	Lowest combined Capital and O&M Costs for 20- year life per unit of benefit	6	5	8	30	48		
Provide Natural Systems Enhancement	7	Improve ecosystem form and function within the project area	5	5	9	25	45		
Recreational Benefits	7	Maintain or improve Lake Recreational Benefits (Swimming, boating, fishing, etc.)	5	7	9	35	45		
Social Benefits	7	Provide public benefits such as increased property value, economic development, educational opportunities, aesthetics, etc.	5	7	9	35	45		
Reduce Lake Henry Flooding During Wet Weather Periods	8	Reduce extent/depth of flooding for residents adjacent to Lake Henry for the 100-year, 24-hour event based on existing flood maps	4	7	7	28	28		
Minimize Impacts (temporary/permanent) to residences and businesses	9	Construction and Operation of Proposed Improvements has minimal impact on residences and businesses	3	7	7	21	21		
Likelihood or Ease of Permitting	10	Regulatory Acceptability and Less Time/Lower Cost for Project Permitting	2	7	5	14	10		
Proven Treatment/Recharge Approach	11	Use project elements which are effective and meet regulatory requirements	1	8	8	8	8		
* = Rank from 1 to 15, "1" is most preferred		Each criterion scored from 1 to 10, 10 is best Max. Option points = 1030	TOTALS			681	834		

Treatment Train - Implementing Cost Effective BMPs For Non-Point Source Management

Relative Comparison of Structural BMP Pollutant Removal Effectiveness

POLLUTANT	INFILTRATION/ VOLUME REDUCTION	DETENTION	WETLAND ¹	CHEMICAL COAGULATION	FILTRATION/ UV	FILTRATION/ OZONE	LIQUID/SOLIDS SEPARATION STUCTURE
Nitrogen	H - VH	L - M	L-H	L - M	L - M	L - M	L
Phosphorus	H - VH	L - M	L-H	H - VH	L - M	L - M	L
TSS	H - VH	Н	Н	H - VH	H - VH	H -VH	L – M
BOD	H - VH	L - M	M	M	M – H	M – H	L – M
Heavy Metals	H - VH	L - M	M - H	M - H	L - M	L – M	L – M
Pathogens	H - VH	L	L	H - VH	VH	VH	L
Gross Solids	H - VH	Н	Н	L - H	VH	VH	H-VH

1. Highly dependent on influent pollutant concentration and hydraulic loading rate

VH – Very High H – High M – Medium L- Low

Comparison of BMP Treatment Efficiencies for Primary Pollutants

Type of BMP	Estimated Removal Efficiencies (% Load Reduction)							
	TN	ТР	TSS	BOD				
INFILTRATION/REUSE Volume Reduction 1.00" VOLUME 1.50" VOLUME	80 90	80 90	80 90	80 90				
WET DET (14-21 day WSRT)	25-35	60-70	90	50-70				
WET DET/FILTER	0-10	50	85	70				
DRY DETENTION	10-20	20-40	20-60	20-50				
DRY DET/FILTER	(-)-20	(-)-20	40-60	0-50				
CHEMICAL TREATMENT	20-40	80-90	>90	30-60				
WETLAND TREATMENT	(-)-90	(-)-90	50-90	(-)-50				

BMP Life Cycle Cost Comparisons are highly variable

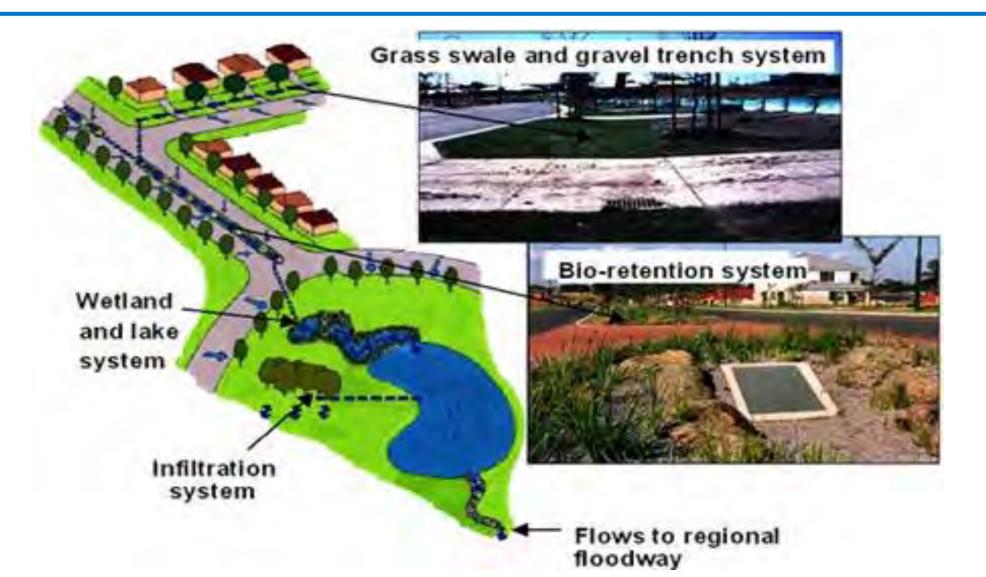
Retrofit BMP	Life Cycle Cost per kg TP removed (\$)	Life Cycle Cost per kg TN removed (\$)		
Pet Waste Education	150 - 300	20 - 40		
Second Generation Baffle Box	400 – 1,600	250 - 500		
Wet Detention Pond	200 - 2,400	100 - 1,000		
Dry Detention Basin	1,500 - 7,000	1,250 - 2,500		
LID - Bioretention	1,000- 40,000	500 - 5,000		
Stream Restoration	1,000 - 4,000	300 - 600		
Chemical Treatment	90 - 180	50 - 100		
Enhanced Wetland Treatment	100 - 200	100 - 200		

Larger - regional systems tend to have significantly lower life cycle costs per mass of TP and TN removed than many smaller systems. LID for new construction is more cost effective.

Recreational and Educational Elements

Include recreational elements to allow a stormwater treatment system to be useful to the public and a benefit to community

Lessons Learned on BMP Design – LID and Innovative BMPs


- Conventional stormwater BMPs designs are standardized
 - They can have problems but standardization helps implementation
- Innovative and Low Impact Design (development) BMPs are not.
 - The lack of design standards and examples hinders implementation

Lessons Learned on BMP Design – LID and Innovative BMPs

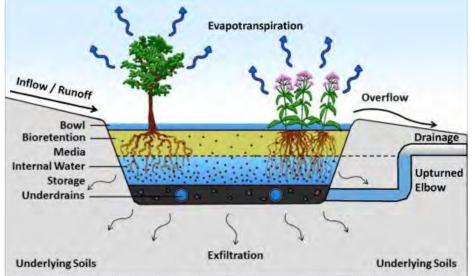
- Lessons learned from:
 - Design and construction of local government projects
 - Designs to met local regulatory requirements
 - In 2018 Alachua County enacted code that requires LID BMPs in certain areas
- Some lessons:
 - There is no consistent method for incorporating LID in design calculations which dis-incentivizes some BMPs
 - Conflicts with other codes and comp plans are possible
 - Designs for nitrogen removal remain a challenge
 - Lack of experience or design standards can lead to poor implementation or construction problems
 - Maintenance issues exist

Lessons Learned on BMP Design – LID and Innovative BMPs

Lack of Consistent Design Calculation Methods

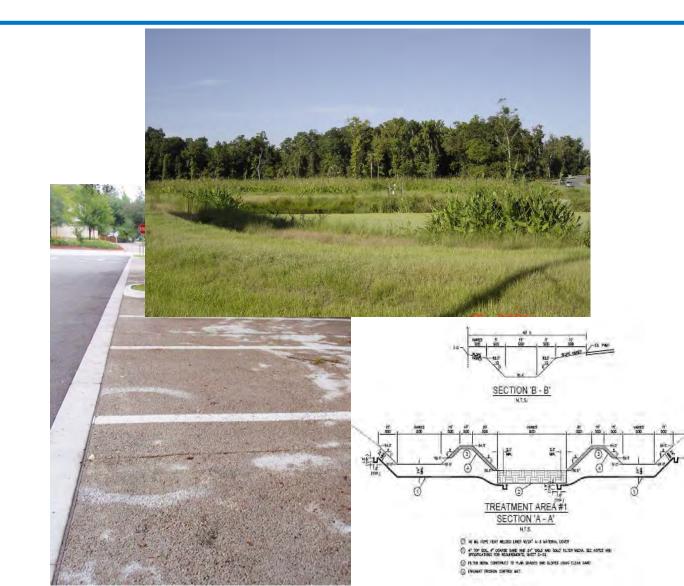
- If this parking lot was pervious asphalt a curve number credit would be given
- But no runoff quantity credit for bioretention islands unless each is modeled
- The end result is that bioretention is designed as an end-of-pipe pretreatment area adjacent to retention pond

Conflicts With Other Codes



If the land development regulations require curb and gutter then this isn't possible

- LID BMPs can take up more space...so do other things like conservation areas, open space, common areas, rights-of-way, etc.
 - LID BMPs are stormwater BMPs...where are stormwater BMPs allowed?


The Challenge of Nitrogen Removal

- BMP designs that provide improved nitrogen removal:
 - Biosorption Activated Media (BAM)
 - Internal Water Storage (IWS)
- BAM has the advantage of:
 - More installations and monitoring
 - It can be used in LID and conventional BMPs
 - No liner so retention (infiltration) still possible
- But cost is a concern
- IWS designs haven't been adapted to Florida...yet

We All Make Bad Decisions...

- All BMPs have potential for problems (e.g. retention pond + karst = sinkhole)
- LID BMPs have some unique concerns:
 - Aesthetics the wrong plants or poor plant location
 - Poor site location sedimentation or debris buildup
 - Construction errors improper placement of BAM

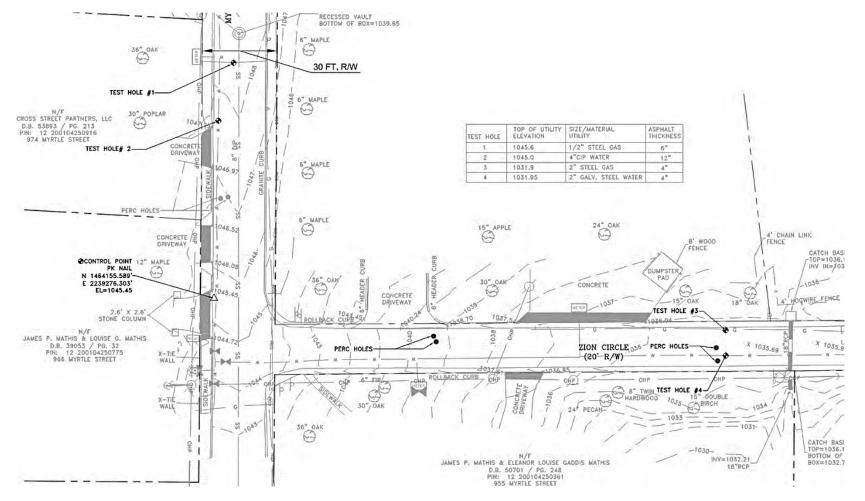
Maintenance

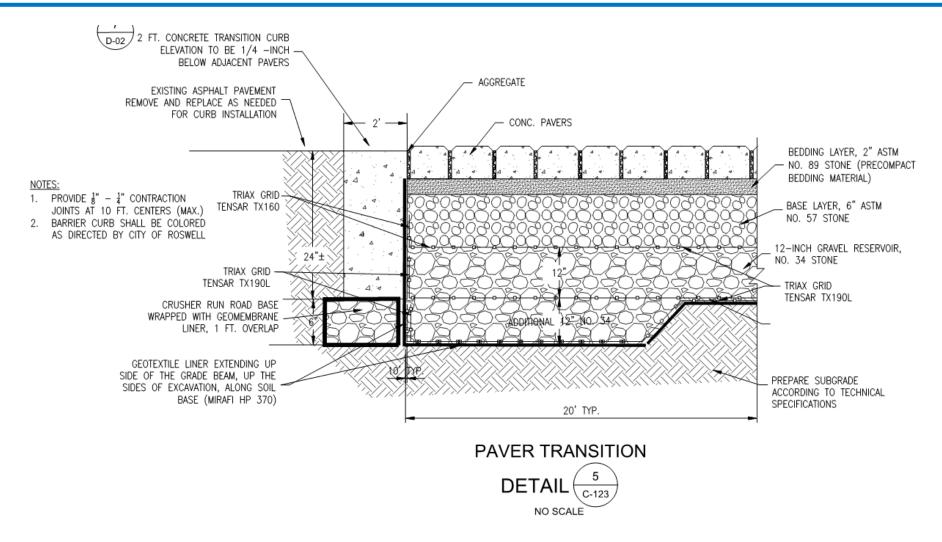
- LID BMPs do sometimes have unique maintenance concerns
 - Plantings to maintain
 - Media needing replacement
 - Sweeping of pervious pavements
- Not taking into account the maintenance required can lead to problems later on
- Another long term issue is making sure these sometimes small scale practices remain in place.

Permeable Paver Projects Lessons Learned

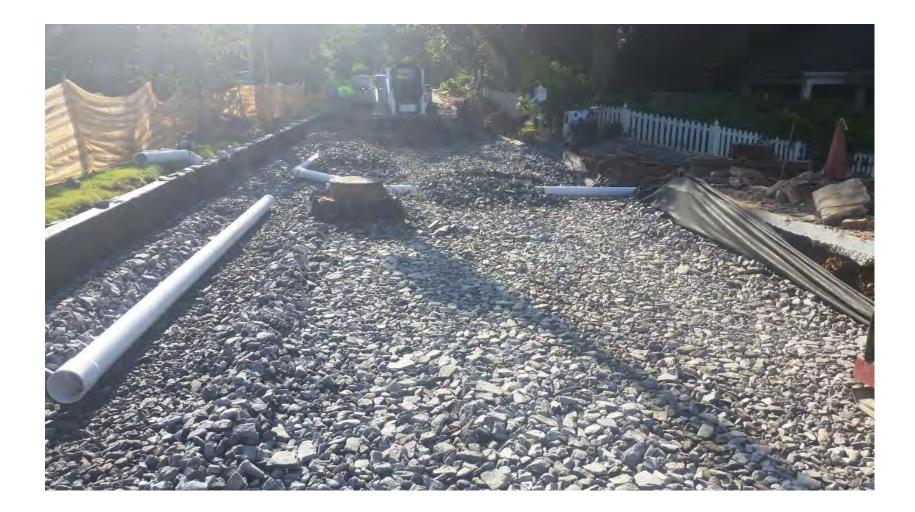
Myrtle Street and Zion Circle -1st permeable paver project

- Goal demonstration project,
- Financing City Stormwater funds, 319(h) grant, and new BMP credit policy
- Public Outreach brochure, sign
- Unique Established Shared Stormwater Policy
- Area 12,400 sf
- Cost \$325,984 (\$26/sf)


Myrtle Street/Zion Circle


Construction Lessons and Photos

Survey, Geotech and SUE

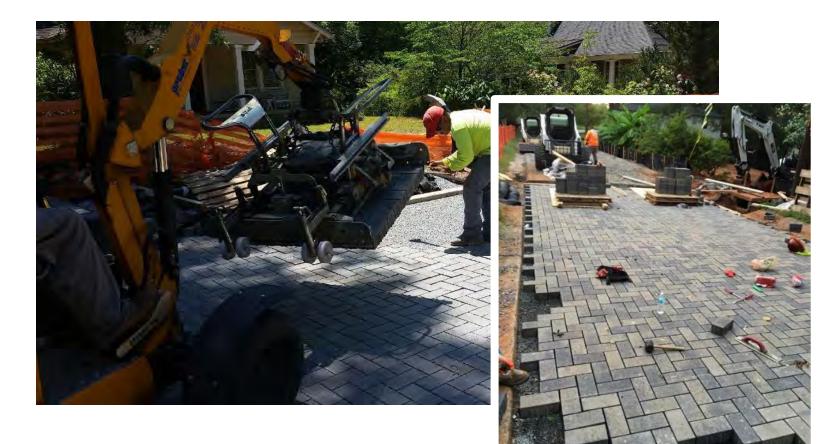

Permeable Paver Detail

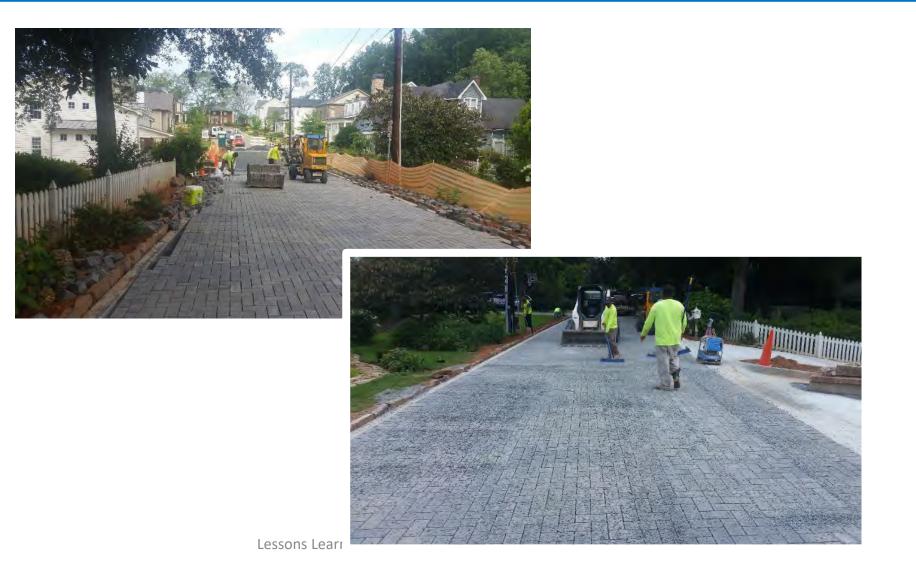
Excavation

Underdrain Installation

Storage Stone Layer

Base Stone Layer and Compaction


Concrete Cut Off Wall


Homeowner Access?

Paver Installation

Set Curb and Final Aggregate Stone

23

Lessons Learned

- Contractor needs utility experience
- Compaction of stone layers
- Shallow reservoir less expensive, avoids utilities, easier constructability
- Access to homes during construction may be blocked
- Check stone specs during installation
- Vertical restraining curb
- Transitions one material to another
- Contingency plan for unsuitable soils

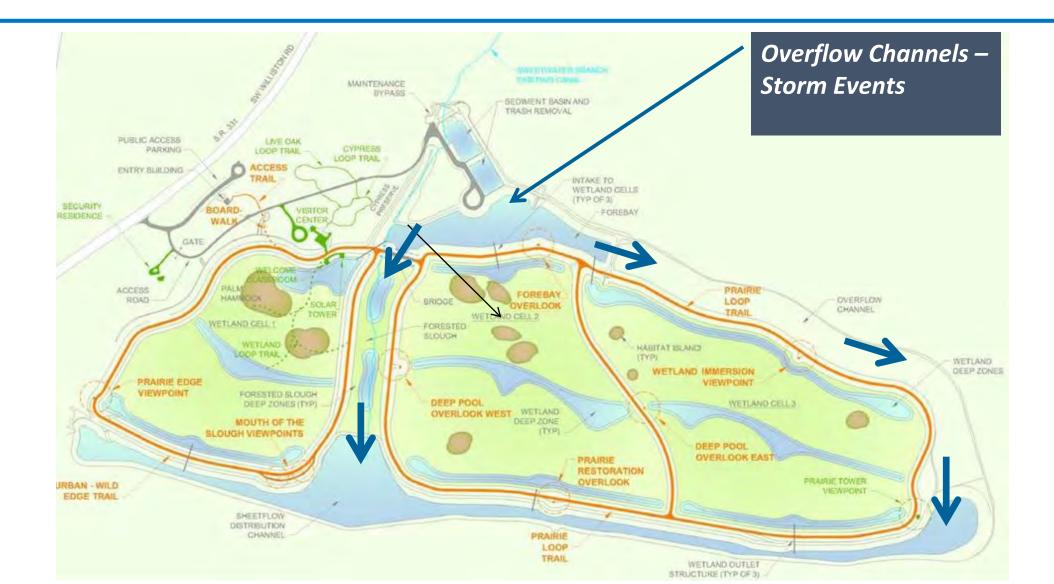
Lessons Learned

- City provides maintenance
- Good education opportunity
- More expensive than some options
- Public and elected officials Love It
- Stormwater treatment that fits in Historic Area

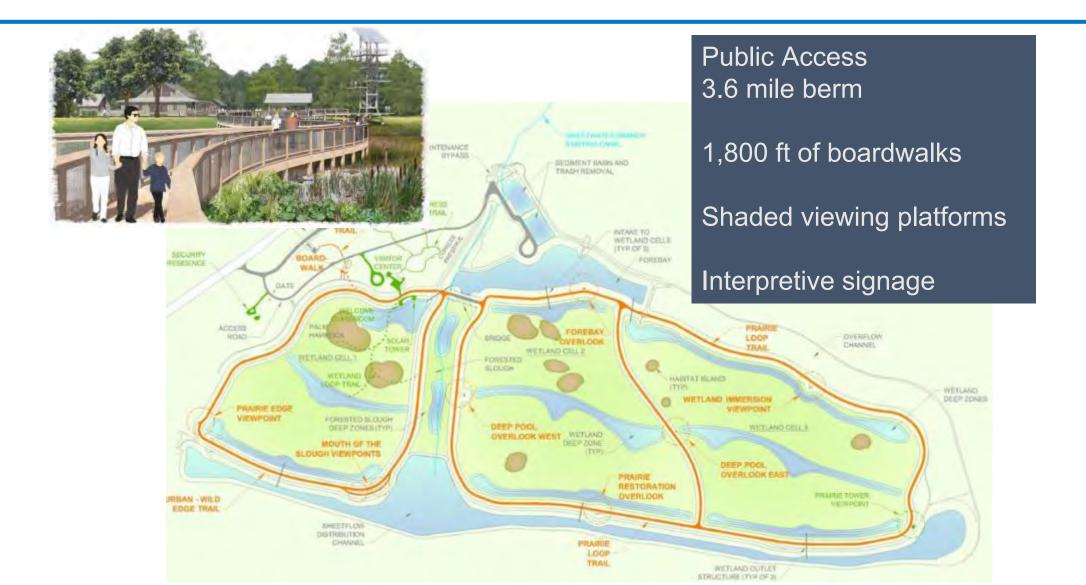
Wetland Treatment Systems

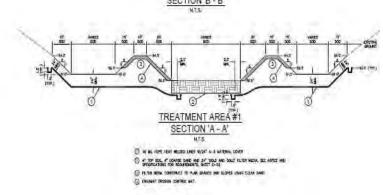
- Wetland treatment systems are scalable
 - 31st St: 30 Ac of drainage area
 - Depot Park: 80 Acres of drainage area
 - Sweetwater: 3.3 Sq. Miles of drainage area
- Do require space:
 - 31st St : ~3 Ac
 - Sweetwater: 125 Ac
- Typically target nutrients from urban sources

Wetland Treatment Systems



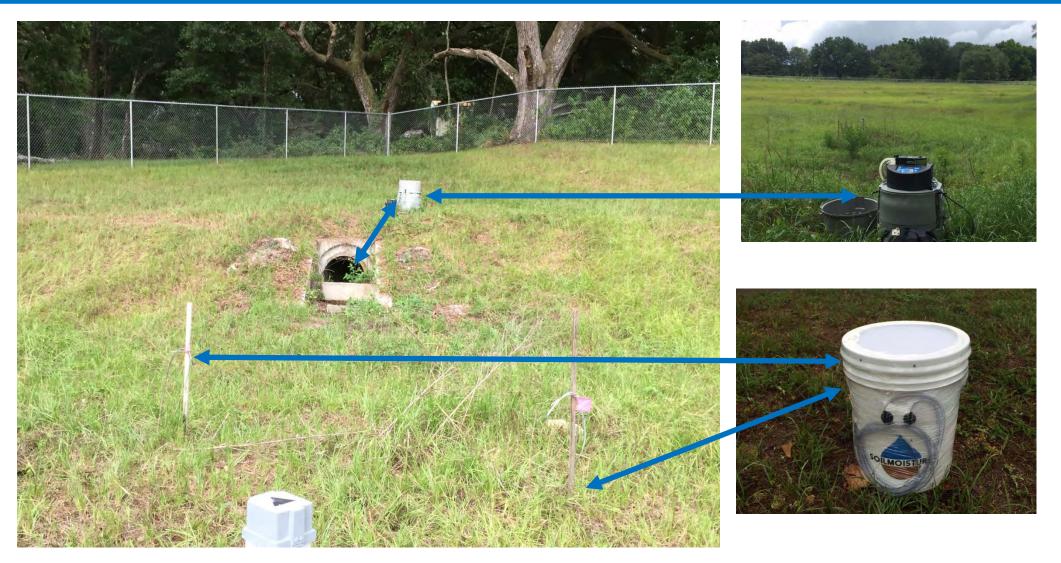
But can also treat agricultural nutrient sources

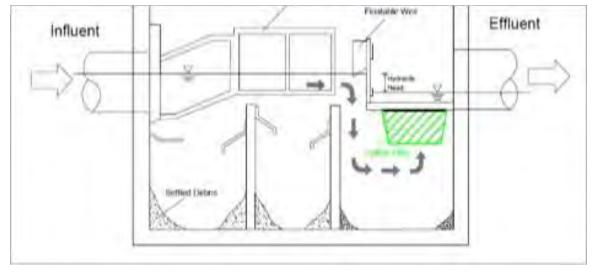

- Most are gravity flow systems
- Some like Deep Creek pump from the waterbody being treated



8

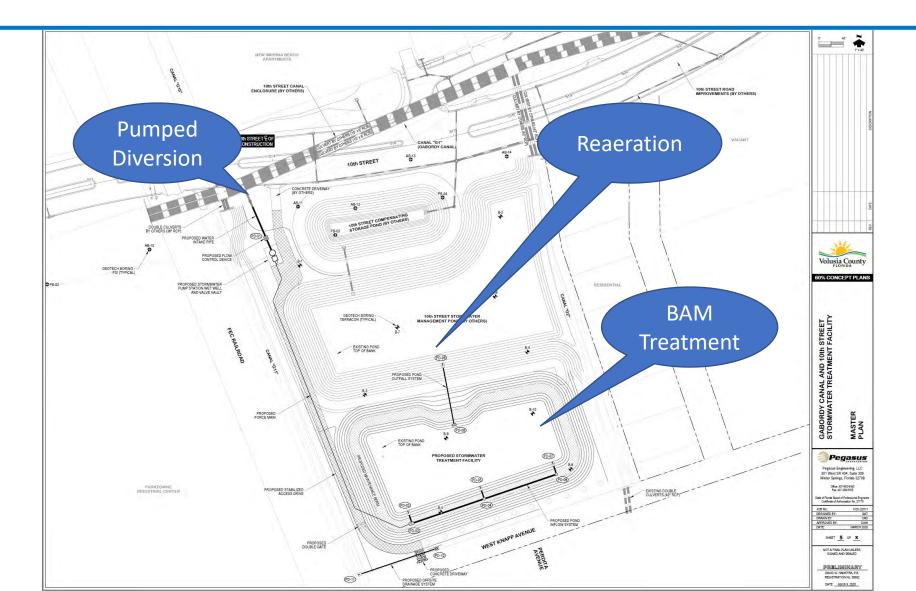
Biosorption Activated Media (BAM)

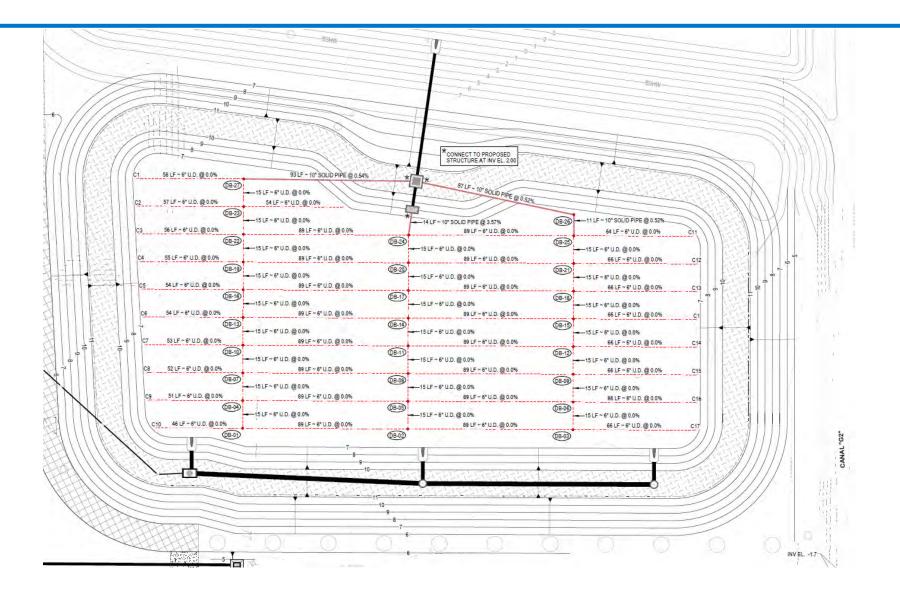

- Typically involves replacing on-site soils with a pre-mixed media that increases nutrient removal
 - Example: Village of Rainbow Springs
- Converting organic nitrogen to nitrate improves removal
 - VRS used lined forebays acting as sand filters
- When used in retention BMPs BAM allows recharge to continue


Biosorption Activated Media (BAM)

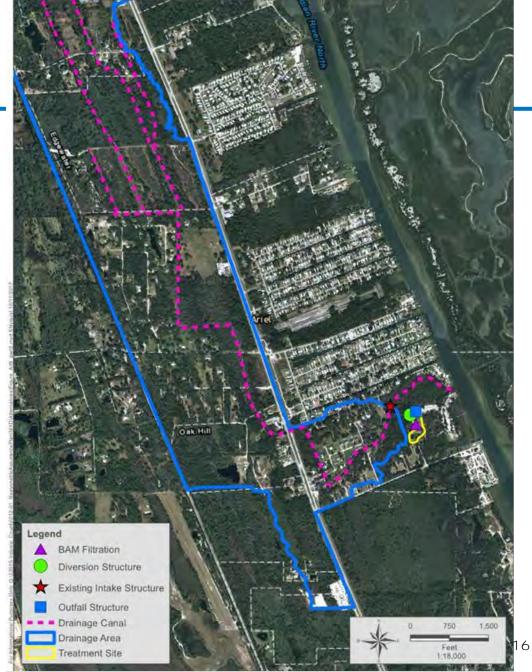
- The entire retention pond bottom does not need to be lined with BAM
- Studies show relatively high removal rates
 - Some limitations:
 - Flood storage
 - Soil hydraulic conductivity
 - High water table

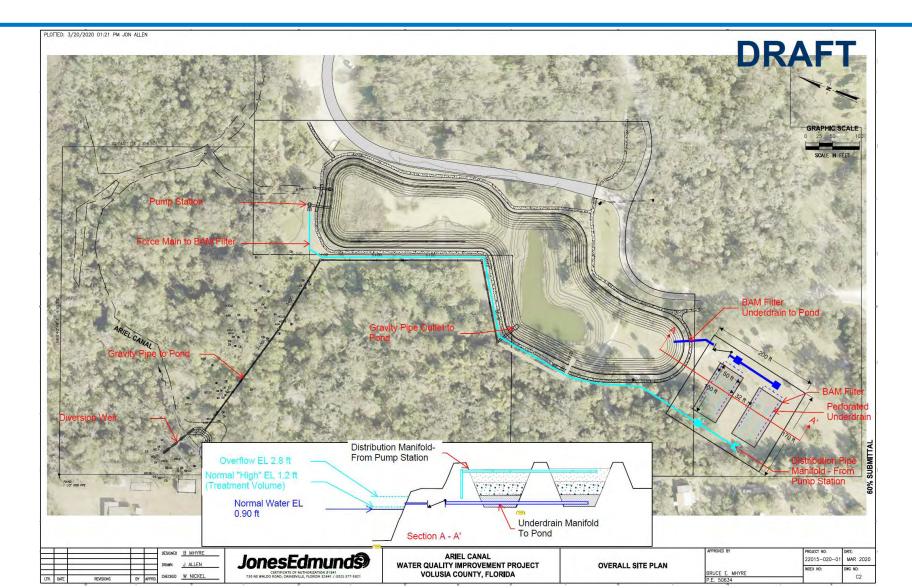
Biosorption Activated Media (BAM)

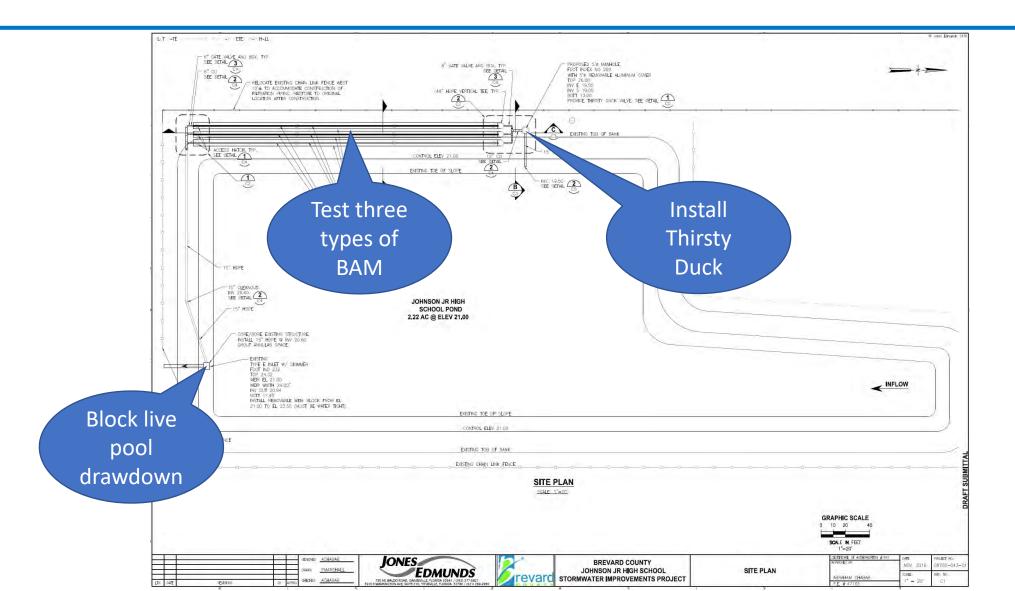



- BAM is also used in upflow filters
- Upflow filters can be used to polish detention pond effluent and in baffle boxes
- Consult with the manufacturer to size

- 4,600-acre area
- 6-acre parcel for treatment \rightarrow 2.5 acres
- 5,600 lb/yr TN

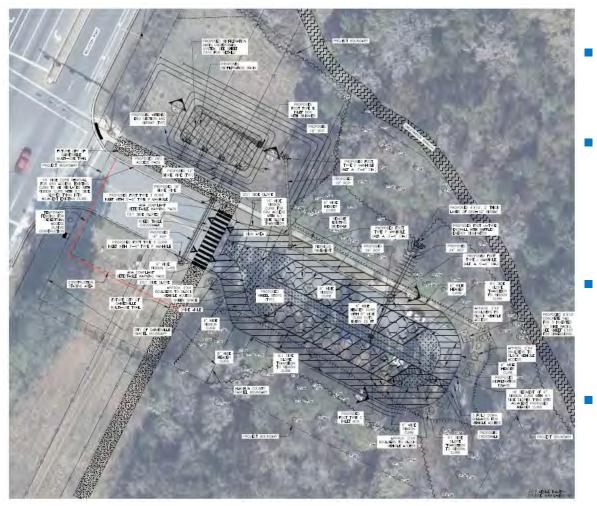



14


15

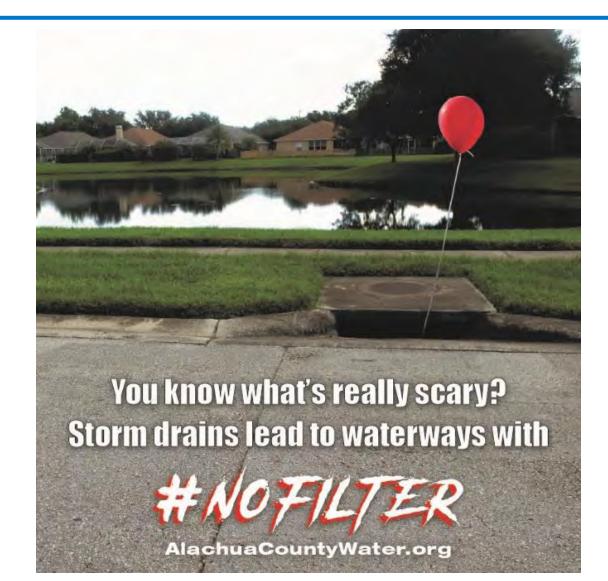
- 1,500-acre area
- Existing wet pond and wetland treatment
- 1,300 lb/yr TN

17

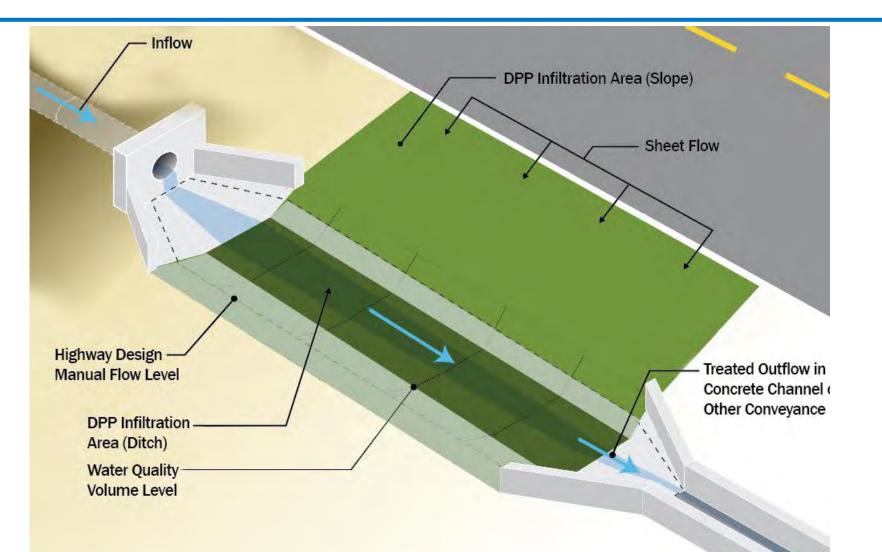

Low Impact Design

Rural Urban				
Natural Area	Rural Agriculture	Suburban/ Large Lot	Urban/ Small Lot	Urban/ Activity Center
Leave unimpacted Preserve and protect	Cluster design Vegetated swales Bioretention Rain barrel/ cistern	Vegetated swales Vegetated natural buffers Bioretention Rain barrel/cisterns Curb elimination/ cuts Native plantings Enhanced stormwater ponds	Vegetated swales Bioretention Rain barrel/cisterns Permeable surfaces Soil amendments Exfiltration Curb cuts Green roofs w/	Green roofs w/cisterns Cisterns Permeable surfaces Soil amendments Exfiltration Curb cuts Tree filter boxes Native plantings
This is not an all inclusive list!			Native plantings Enhanced stormwater ponds	Recessed parking Islands

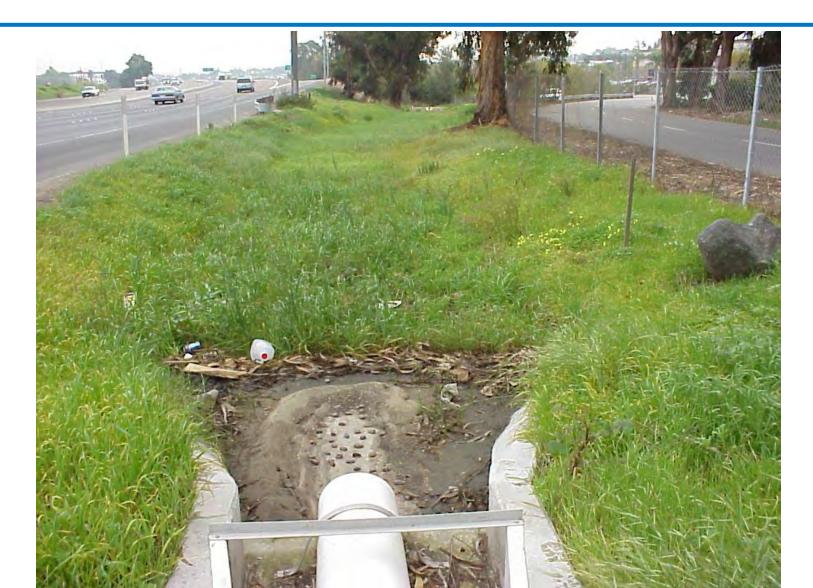
Low Impact Design

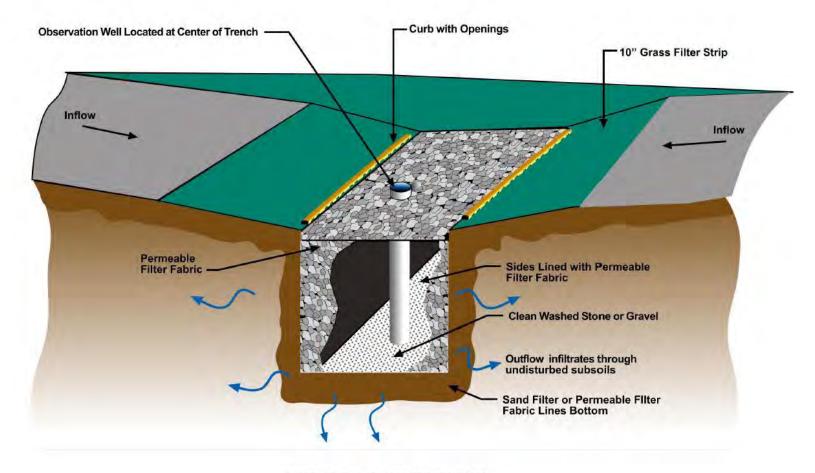


Low Impact Design

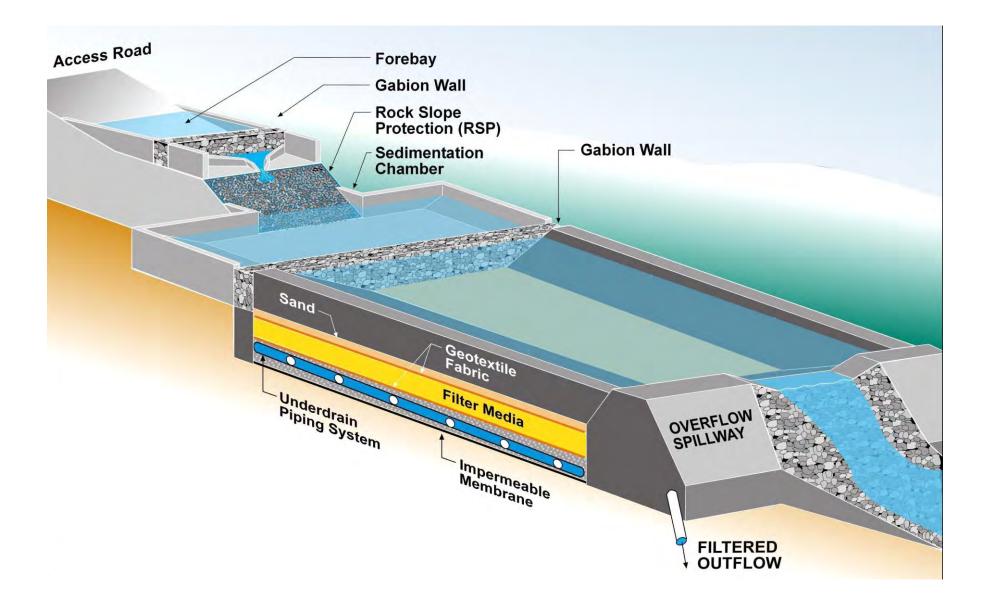


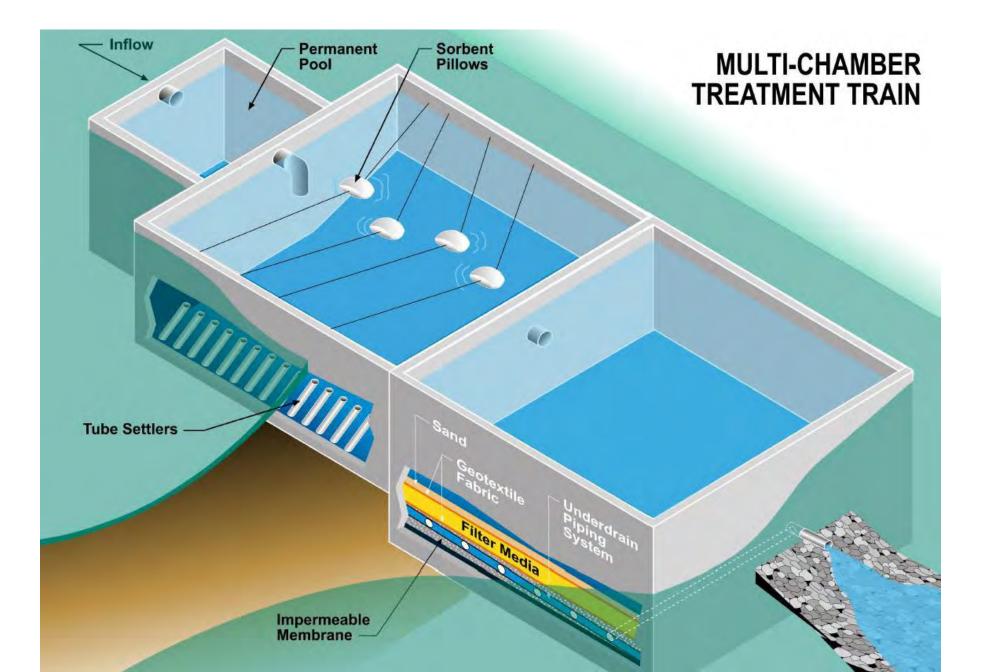
- Sweetwater Preserve Trailhead Parking Area
- Parking spaces: interlocking concrete pavers on a reservoir course
- Access drive and road runoff treated in bioretention (filtration)
- Bioretention area will have four subsurface sections to test combinations of IWS and media


In conclusion

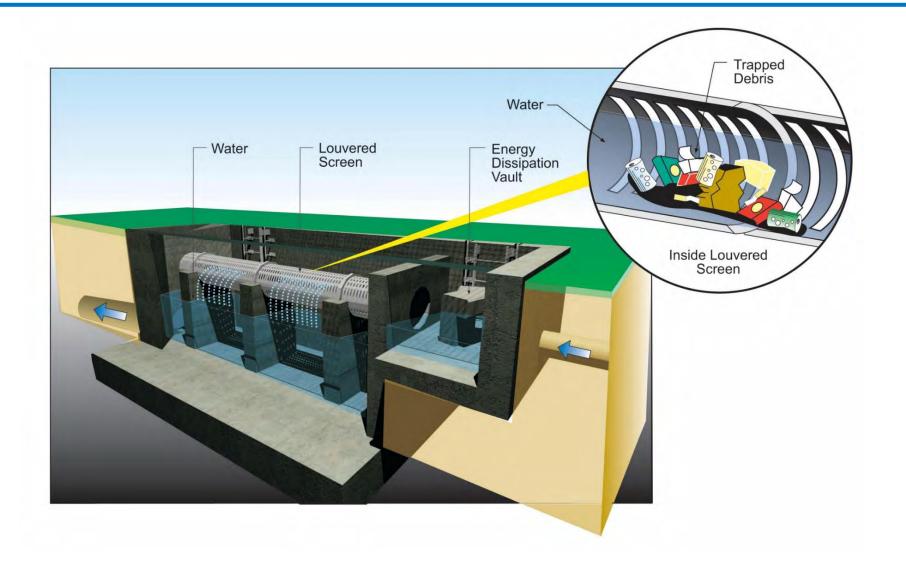

Biofiltration Strips and Swales

Biofiltration Strips and Swales

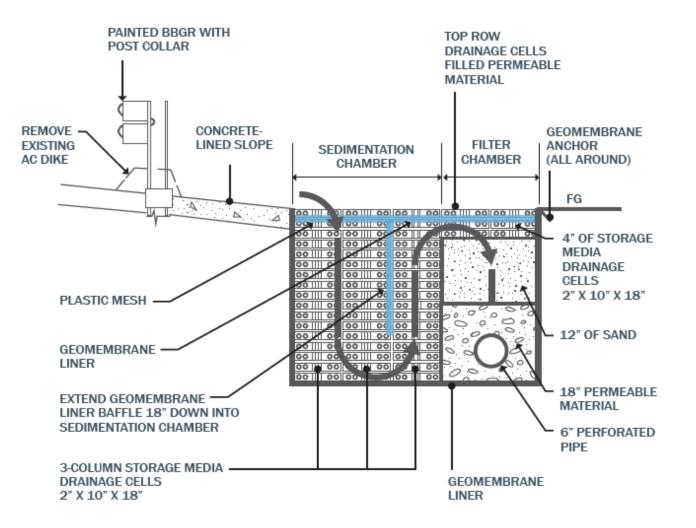

Infiltration Basins and Trenches


INFILTRATION TRENCH

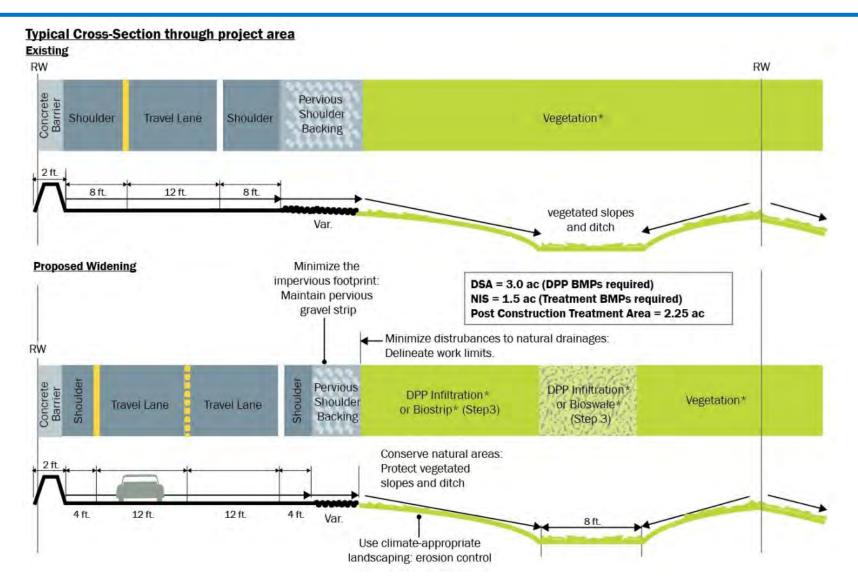
Infiltration Basins and Trenches



Gross Solids Removal Devices (GSRDs)



Gross Solids Removal Devices (GSRDs)



Pilot Studies

BMP Consideration – in ROW

37

Completed Project

15 Acre SAV/Wet Detention System treats 600 acres Construction cost \$1M Annual O&M cost \$20,000 Property owned by FDOT

Life Cycle Costing

TA N/A = Not applicable	BLE 1: EFFICIENCIES FOR NON	POINT SOURCE MANAGEMENT B	MPs						
¹ This is a change from a previous method. The benefits of a baffle box—including BMP maintenance—are included in the baffle box credits when they are installed.									
STANDARD BMPs	TP % REDUCTION TN % REDUCTION		DATA SOURCE						
Off-line retention BMPs	40 % - 84 % (see Table 5 for formulas)	40 % - 84 % (see Table 5 for formulas)	 Harper, H. & D. Baker. 2007. Evaluation of Current Stormwater Design Criteria within the State of Florida. DEP Evaluation/Regression of Harper, H., and D. Baker 2007 DEP Evaluation/Regression of Harper, H., and D. Baker 2007 						
On-line retention BMPs	30 % - 74 % (see Table 5 for formulas)	30 % - 74 % (see Table 5 for formulas)							
Grass swales with swale blocks or raised culverts	Use on-line retention BMPs above	Use on-line retention BMPs above							
Grass swales without swale blocks or raised culverts	50 % of value for grass swales with swale blocks or raised culverts	50 % of value for grass swales with swale blocks or raised culverts	DEP Evaluation/Regression of Harper H., and D. Baker 2007						
Wet detention ponds	Formula shown on Figure 13.2 of the Draft Stormwater Treatment Applicant's Handbook- (see Figure 1 below for formula)	Formula shown on Figure 13.3 of the Draft Stormwater Treatment Applicant's Handbook (see Figure 2 below for formula)	Draft Stormwater Treatment Applicant Handbook, March 2010 DEP Evaluation/Regression of Harper H., and D. Baker 2007						
Dry detention ponds	10 %	10 %							
BMP treatment trains using a combination of BMPs	Efficiency = Eff1 + $((1-Eff1) *Eff2)$ Efficiency = Eff1 + $((1-Eff1) *Eff2)$		Draft Stormwater Treatment Applicant Handbook, March 2010 and UCF Stormwater Management Academ BMPTRAINS model						
Baffle boxes—First generation (hydrodynamic separator) ¹	2.30 %	0.50 %							
Baffle boxes—Second generation ¹	15.5 %	19.05 %	First and second generation: Final Repo Contract S0236 Effectiveness of Baffle						
Baffle boxes—Second generation plus Bold & Gold® media filter ¹	70 %	75 %	Boxes Plus Media Filter: UCF and City of Casselberry studies DEP Evaluation/Regression of Harper, H., and D. Baker 2007						
Baffle boxes—Second generation plus Vault-Ox® media filter ¹	8 %	50 %							
Alum injection systems	90 %	50 %							

Life Cycle Costing

- Construction costs
- Land costs
- O&M costs
- Useful life
- Consistent approach

Life Cycle Costing

Project	Crane Creek M-1 Canal Flow Restoration Canal Diversion Weir, Pump Station, Force Main, and Stormwater Treatment Area								
Life	Project Economic Life	60	years						
on Cost	Initial Cost	Estimated Cost Low	Estimated Cost High						
Construction Cost	Capital Cost, Range					\$11,400,000			
C	Capital Cost Annualized over the Project Life					\$ 438,745			
ts	Replacement Costs		Life Years	# Replacements over project life	1 time Replacement Cost	Replacement Cost			
Replacement Costs	PUMP STATION (Mech and Elec Equip)		30	1.0	\$ 919,000	\$919,000			
	FORCE MAIN (Partial Replacement)		50	0.2	\$ 1,417,000	\$283,400			
	OPERABLE WEIR (Mech and Elec Equip)		20	2.0	\$ 1,462,000	\$2,924,000			
	WETLAND, SMALL (Replanting)		30	1.0	\$ 100,000	\$100,000			
	STA (Intake Piping and Stabilization Berm)		30	1.0	\$ 287,000	\$287,000			
ž	TOTAL PRESENT WORTH OF REPLACEMENT COST		\$4,513,400						
	Replacement Costs Annualized over the Project Life	ect Life				\$174,000			
Annual Costs	Annual Costs	Unit	% of initial	Present Worth	Present	Annual cost			
			cost	Factor	Worth				
	Maintenance Cost			25.9832					
	PUMP STATION (Mech and Elec Equip)		1.0%		\$233,849	\$9,000			
	FORCE MAIN (Partial Replacement)		1.0%		\$363,765	\$14,000			
	OPERABLE WEIR (Mech and Elec Equip)		1.0%		\$389,748	\$15,000			
	WETLAND, SMALL		4.0%		\$103,933	\$4,000			
	STA (Intake Piping and Stabilization Berm)		1.0%		\$77,950	\$3,000			
A	Other Maintenance Costs, \$/unit		\$/ unit	Present Worth Factor	Present Worth	Annual cost			
	Pump Electrical Energy		315000	kwh	\$879,013	\$38,000			
	TOTAL PRESENT WORTH OF ANNUAL COST				\$2,048,257				
	TOTAL OF ANNUAL COSTS		\$83,000						
	Replacement + O&M Annual Cost Range \$230,000 TO		\$330,000						