## **Coastal Resilience Index**

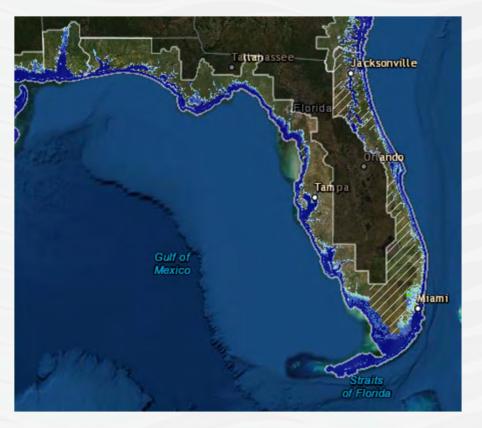
#### Synthesizing Hazard Vulnerability







## **Motivations**


### **Population Living on Coast**

United States: 40% Florida: 75%

#### **Rate or Sea Level Rise**

#### 2011-2015: Sea Level Rise in Southeast Florida was >3 times the global average

- Valle-Levinson, A., Dutton, A., & Martin, J. B. (2017). *Geophysical Research Letters*.



Inundation with a 6ft SLR source: NOAA



## **Motivations**

Tidal Flooding: Temporary inunadtion of low lying areas during periods of exceptionally high tides

Florida: Estimated \$5.4B in property value loss on account of tidal flooding


- First Street Foundation

Florida: Estimated \$76B in costs for sea level rise adaptation by 2040 - Center for Climate Integrity



NGINEERING

APPLIED TECHNOLOGY & MANAGEMENT, INC.



### Getting the Risk Wrong Costs Money

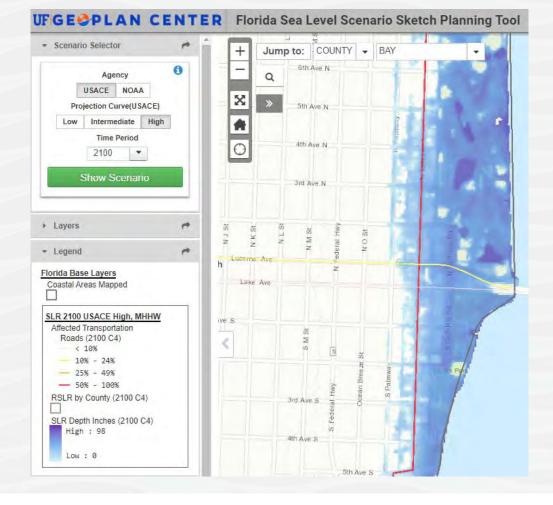
## **Defining Resilience**

Vulnerability (V): function of risk factors that define loss potential at each location, *i*.

 $V_i = f(risk factors_i)$ 

Resilience  $=\frac{1}{V}$ 




# **Existing Mitigation Analysis Tools**

#### Sea Level Scenario Sketch Planning Tool (UF/FDOT)

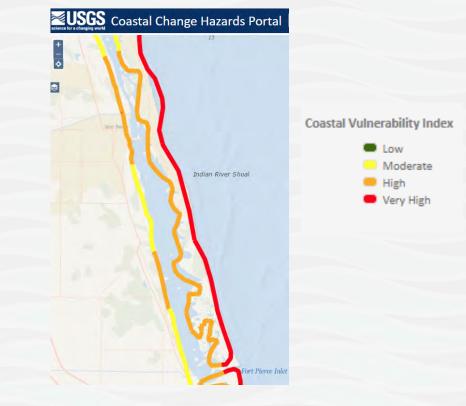
Identifies and displays areas of potential inundation by sea level rise

<u>Criteria</u>

- Sea Leve Rise Flood
   Projections (USACE and NOAA)
- o FDOT Roads layers
- Digital Elevation Models
- o Google Base Maps






# **Existing Mitigation Analysis Tools**

#### Coastal Vulnerability Index (USGS)

Indicates where physical changes are likely to occur due to Sea Level Rise

#### <u>Criteria</u>

- o Tidal Range
- o Wave Height
- o Coastal Slope
- o Shoreline Change





# **Existing Mitigation Analysis Tools**

#### HAZUS (FEMA)

Calculates estimated loss due to physical damage from hazards

Spatially analyzes:

- o Buildings
- Critical Facilities
- o Infrastructure
- o Debris Generation

#### Computes:

- o Direct Loss
- Cost of Repair/Replace
- o Income Loss

#### ATM OF Agricultural loss

**APPLIED TECHNOLOGY & MANAGEMENT, INC.** 



## Existing Mitigation Analysis Tools: Unsatisfied Needs

Ease of use

### Sea level rise

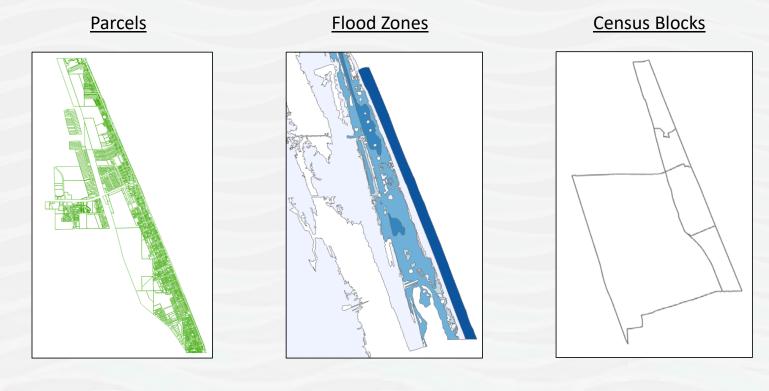
Holism

□Climate change

### □ Florida-specific



# Proposed Tool Methodology: Multi-Linear Regression

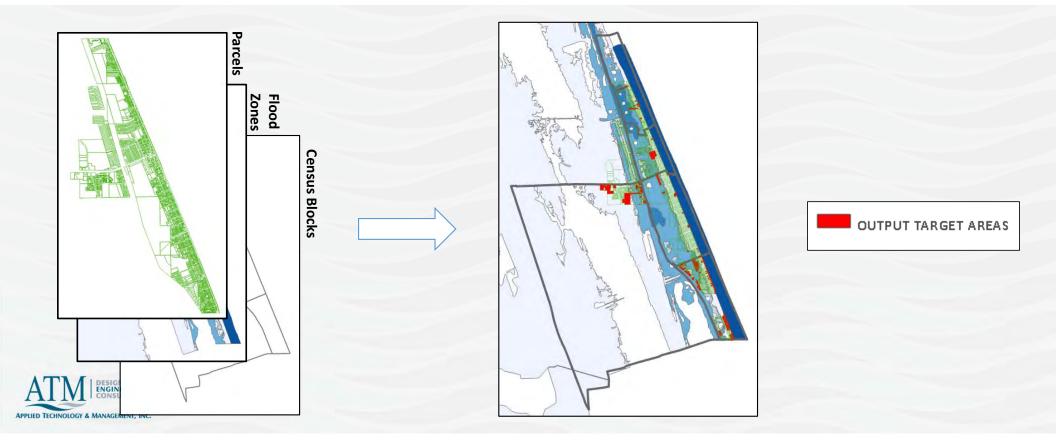

Objective: Establish statistical relationships to formulate vulnerability, defined as economic losses, based on past flooding events.

$$V = \beta_0 + \beta_1 P + \beta_2 F + \beta_3 C$$

V = Vulnerability [\$]
P = Parcel Value [\$]
F = Flood Zones [ft]
C = Census Count [.]



# Conceptual Overview of a New Tool: Inputs






# Conceptual Overview of a New Tool: Interface

|                               | Geoprocessing             | ₩ Ψ × |                                                                                                                                                                               |
|-------------------------------|---------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | Conceptual Tool           | =     |                                                                                                                                                                               |
|                               | Parameters   Environments | ?     |                                                                                                                                                                               |
|                               | Input Geodatabase         |       |                                                                                                                                                                               |
|                               | Parcels                   |       |                                                                                                                                                                               |
|                               | Flood Zones               |       |                                                                                                                                                                               |
|                               |                           |       | Projected increase in mean sea level for Conceptual Location                                                                                                                  |
|                               | Census Blocks             |       | Low                                                                                                                                                                           |
|                               | Model Year                |       | a intermediate<br>a a b intermediate-High<br>a High                                                                                                                           |
|                               | Scenario                  |       | 10     Intermediate-Low       10     Intermediate-Low       10     Intermediate-High       10     Intermediate-High       11     Extreme       11     Extreme       12     10 |
|                               |                           |       | 4 See                                                                                                                                                                         |
| TM                            |                           |       | ₩ 2                                                                                                                                                                           |
| TECHNOLOGY & MANAGEMENT, INC. |                           | Run 🕑 | 0<br>2000 2020 2040 2060 2080 21                                                                                                                                              |

# Conceptual Overview of a New Tool: Output



## ATM's Tool: Distinguishing Features

#### **Florida-centered Modifications**

- Coastal/Hydrodynamic Elements
- o Insurance Factor

#### **Sea Lever Rise and Climate Change**

2044 Flooding



2069 Flooding



**2119 Flooding** 



## ATM's Tool: **Increased Storm Frequency & Severity**

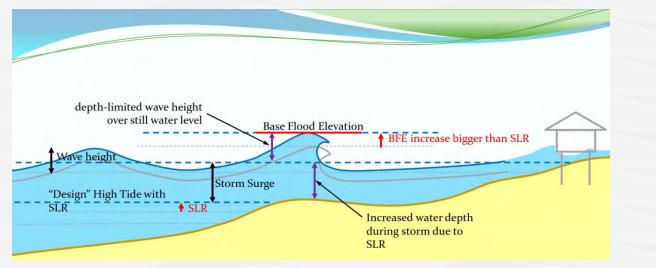


"The heaviest rainfall events have become heavier and more frequent"

U.S. Global Change Research Program






"Tropical rainfall rates and intensities will likely increase in the future due to anthropogenic warming and accompanying increase in atmospheric moisture content"

Incorporating into tool:

 Gradually increase impact factor of flooding on a temporal scale



### ATM's Tool: Wave Height Adjustments



DESIGN

APPLIED TECHNOLOGY & MANAGEMENT, INC.

- FEMA flood maps do not account for Sea Level Rise
- Storm Surge and Wave Height for 100-yr storm may change if events are more intense or frequent

Incorporating into tool:

- Increase impact factor of
  - VE Zones

## ATM's Tool: Insurance Uncertainty



"a repeat of a Hurricane Andrew-sized loss today (\$50 billion to \$60 billion) would result in more insurer insolvencies than occurred in 1992."

"various vulnerabilities in the current Florida residential insurance market" - Journal of Insurance Regulation (2018)

Incorporating into tool:

- Increase Parcel Value coefficient
- Increase impact factor of displaced household/residents



## Conclusions

#### **How this Tool Helps FSA Members**

GIS-based

Florida-centric

Easy data acquisition

Target identification without extensive resource outlay

