

# Hydrologic Baseline for CC/SLR Planning

June 19, 2019



Letting Science Tell the Story: Practical and Powerful Resiliency Planning



# **Introduction- What Risks Will Change?**

# Flooding

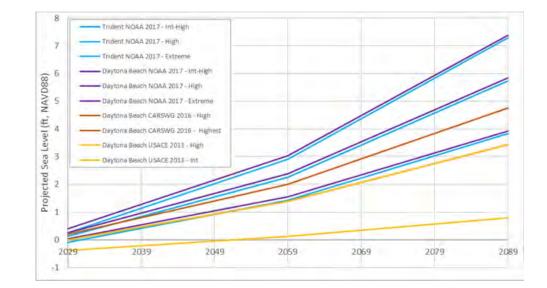
- Watershed
  - Larger extreme events
  - Wetter wet seasons
  - Higher boundary conditions
- Coastal
  - Higher sea level
  - Stronger tropical events
- Water Quality
  - Rainfall patterns
  - Salinity changes



# **Introduction - What Risks Will Change?**

- Transportation
  - Saturated subbase
- Electrical Infrastructure
  - Significant increase in days >95°
- Water Supply
- Wastewater Collection
- Natural Systems
- Fire
- Wind




## **Introduction - What Risks Will Interact?**

- Water Supply vs. Minimum Flows and Levels
- Flooding vs. Wastewater Collection (sanitary sewer overflows) vs. Water Quality
- Flooding vs. Natural Systems
- FEMA does not analyze for changes in future risk



## **Introduction – How Do We Quantify the Risks?**

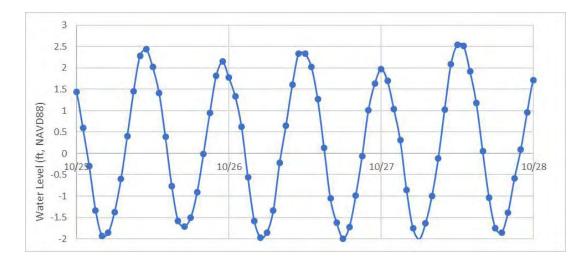
- Useful, understandable presentation of results
- Consider everything that could change and how it interacts
- Live with some uncertainty



## **Introduction – How Do We Quantify the Risks?**

- Define what you want to protect
- Define when risks become actionable
- Tie to economic life of infrastructure or asset
  - E.g., 10, 25, and 100 years

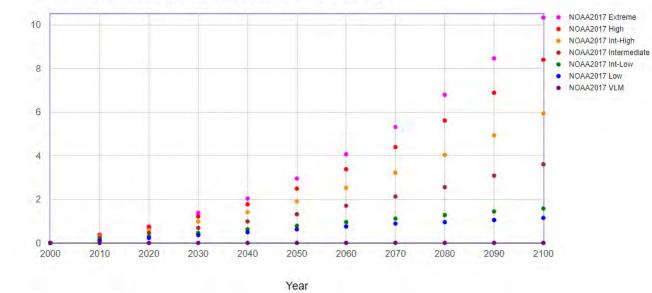
|                                  | Projected BFE (ft NAVD88) |      |      | Critical<br>Elevation | Projected Flood Depth (ft) |      |      |
|----------------------------------|---------------------------|------|------|-----------------------|----------------------------|------|------|
| Asset                            | 2029                      | 2059 | 2089 | (ft NAVD88)           | 2029                       | 2059 | 2089 |
| Water Pump Station               | 7.8                       | 9.3  | 9.9  | 13.20                 | 0.00                       | 0.00 | 0.00 |
| Radar Site                       | 6.5                       | 8.0  | 10.6 | 3.70                  | 2.80                       | 4.30 | 6.90 |
| Air Traffic Control Tower        | 8.1                       | 9.7  | 12.2 | 12.60                 | 0.00                       | 0.00 | 0.00 |
| Industrial Water Pumping Station | 7.5                       | 9.6  | 12.5 | 10.10                 | 0.00                       | 0.00 | 2.40 |


## **Introduction – How Do We Adapt to Changing Risks?**

- Specific to the risk or group of risks
- Planning and prevention
- Individual asset vs. group
- Timeline of risk vs. economic life of infrastructure
- Social equity



## **Watershed Risk Analysis – Tailwater Elevation**


- Watershed and surge risk not dependent or independent
- Timing within the tidal cycle
- Convention: Mean higher high tide



#### **Watershed Risk Analysis – Tailwater Elevation**

**RSLC** in feet

- Decision on SLR prediction
- US Army Corps of Engineers' Sea Level Change Curve Calculator tool

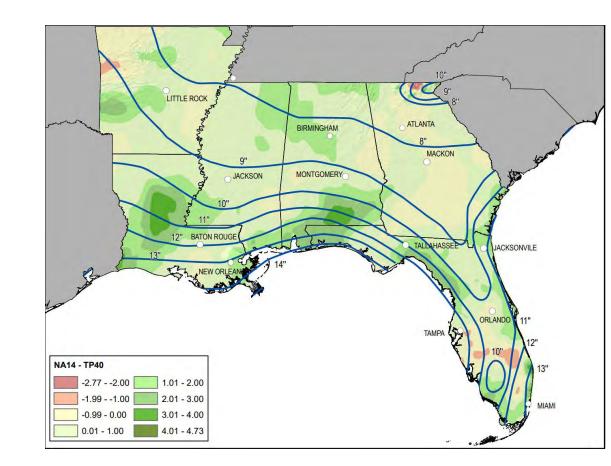


NOAA et al. 2017 Relative Sea Level Change Scenarios for : DAYTONA BEACH

## **Watershed Risk Analysis – Initial Conditions**

- Surface storage filled from increased tailwater
- Surface storage filled from wetter wet season?
- Constructed stormwater features often not impacted




#### Watershed Risk Analysis – Soil Storage/Groundwater

- Coastal areas affected by higher tides
- High water table areas affected by wetter wet seasons
- Increases dependent on water table elevatins, distance, local drainage, etc.
- See Singhofen presentation



#### **Watershed Risk Analysis – Extreme Rainfall Events**

- Long-term changes hard to quantify
- Warmer air can hold more moisture
- Use higher published values, at a minimum
- E.g., SFWMD working with FIU on new data



#### Watershed Risk Analysis – Timeline and Economic Life

- Application of results to assets
- Compare timeline of risk to economic life
- Future considerations (e.g., tie ins)

|                                  | Projected BFE (ft NAVD88) |      |      | Critical<br>Elevation | Projected Flood Depth (ft) |      |      |
|----------------------------------|---------------------------|------|------|-----------------------|----------------------------|------|------|
| Asset                            | 2029                      | 2059 | 2089 | (ft NAVD88)           | 2029                       | 2059 | 2089 |
| Water Pump Station               | 7.8                       | 9.3  | 9.9  | 13.20                 | 0.00                       | 0.00 | 0.00 |
| Radar Site                       | 6.5                       | 8.0  | 10.6 | 3.70                  | 2.80                       | 4.30 | 6.90 |
| Air Traffic Control Tower        | 8.1                       | 9.7  | 12.2 | 12.60                 | 0.00                       | 0.00 | 0.00 |
| Industrial Water Pumping Station | 7.5                       | 9.6  | 12.5 | 10.10                 | 0.00                       | 0.00 | 2.40 |

## **Adaptation Plan**

- Green infrastructure more adaptive than gray
- Storage, conveyance, diversion, and avoidance
- Integrated water resources planning (e.g., water quality)



# **Combined Hydrologic Risks**

- Current semi-independent approach is reasonable for coastal and watershed dominated portions
- May be inadequate where both are important
- Combined approach may be needed in some areas

