

Florida Stormwater Association 2019 Annual Conference

Planning for Resiliency in Coastal Communities

June 21, 2019

Adaptive Management

Planning for Resiliency in Coastal Communities

Hurricane History

Cape Coral Area Hurricanes

Hurricane History

Planning for Resiliency in Coastal Communities

Evaluation

FEMA Flood Insurance Rate Maps (FIRM) and Flood Insurance Study (FIS)

Evaluation

FEMA FIS Table 5 - Summary o	f Coastal Stillwa	ter Elevations	(partial data)					B V V V V V V V V V V V V V V V V V V V
ELEVA	TION (feet NAVI	D*)			글!!!!!!!			
FLOODING SOURCE AND LOCATION	10-PERCENT	2-PERCENT	1-PERCENT	0.2-PERCENT		Processing and a second second second		
CALOOSAHATCHEE RIVER (Everest)]			
From mouth to Beautiful Island	3.3	N/A	7	8.1	1			
MATLACHA PASS (Southwest)					1			
Between State Road 78 and south end Pine Island	3.5	N/A	7.3	9.3				
THORTH ANAFRICAN VERTICAL DATUNA -61000					7.			

NORTH AMERICAN VERTICAL DATUM of 1988

- Stillwater conditions (surge and tide) but does not include waves or sea level rise
- Determined elevation of the 1-Percent and the 0.2-Percent annual chance of flood

NOAA Sea, Lake and Overland Surges from Hurricanes (SLOSH)

Reclamation	Water Levels (ft, NAVD88)								
Facility	Category 1	Category 2	Category 3	Category 4	Category 5				
Everest	6.4	10.2	14.8	22.1	27				
Southwest	6.1	10.9	15.4	21.7	26.2				

- High tide + Surge conditions
- Determined theoretical elevations during hurricane events
- Intended to provide regional operational direction
- <u>Not</u> intended to be relied upon for site-specific predicted water levels
- Quickly performs hundreds of simulations to predict potential changes in hurricane size, intensity, and track
- Shortcomings due to a combination of poor mesh resolution, missing internal physics such as tides, nonlinear advection, and internal frictional parameterization

NOAA / USACE Sea Level Rise Calculator

Evaluation

	Recurrence Interval (ft, NAVD88)										
	Intermediate				Intermediate						
	Lo	w	Interm	nediate	Hi	High		High		Extreme	
	100	500	100	500	100	500	100	500	100	500	
Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	
Present	7	8.1	7	8.1	7	8.1	7	8.1	7	8.1	
2020	7.33	8.43	7.46	8.56	7.59	8.69	7.69	8.79	7.72	8.82	
2040	7.69	8.79	8.02	9.12	8.38	9.48	8.74	9.84	9	10.1	
2060	8.08	9.18	8.8	9.9	9.56	10.66	10.41	11.51	11.04	12.14	
2080	8.44	9.54	9.72	10.82	11.13	12.23	12.61	13.71	13.82	14.92	
2100	8.77	9.87	10.77	11.87	13	14.1	15.37	16.47	17.37	18.47	

- Stillwater conditions from FIRM / FIS + SLRC
- SLR can be linearly added to stillwater conditions
- Theoretical projections for intermediate low, intermediate, intermediate high, high, and extreme conditions
- Flooding vulnerability focused on projected SLR in 2020, 2040, 2060, 2080, and 2100 for the Intermediate High scenario

Automated Coastal Engineering System (ACES)

Non-Linearity

Figure 2-4. Wave height transect showing LiMWA, MoWA, and MiWA

Automated Coastal Engineering System (ACES)

	Recurrence Interval (ft, NAVD88)									
	Interm	nediate			Intermediate					
	Low		Intermediate		High		High		Extreme	
	100	500	100	500	100	500	100	500	100	500
Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year
Present	-	0.31*	-	0.31*	-	0.31*	-	0.31*	-	0.31*
2020	-	0.57*	-	0.67*	-	0.77*	-	0.85*	0.02*	0.87*
2040	-	0.85*	0.25*	1.11*	0.53*	1.39*	0.81*	1.67*	1.01*	1.87*
2060	0.30*	1.15*	0.86*	1.72*	1.45*	2.31*	2.11*	2.97*	2.61*	3.46*
2080	0.58*	1.44*	1.58*	2.43*	2.68*	3.53*	3.83*	4.69*	4.05	5.14
2100	0.83*	1.69*	2.39*	3.25*	3.99	4.99*	4.15	5.28	4.26	5.43

- Predicted waves heights
- Increased water elevations due to waves were approximated as 0.7 times the wave height
- Runup and overtopping can be ignored in lieu of wave heights

Predicted Cumulative Water Levels

	Water Levels (ft, NAVD88) – Tides + Surge + SLR + Waves									
	Intermediate Low		Intermediate Low Intermediate		Intermediate High					
							High		Extreme	
	100	500	100	500	100	500	100	500	100	500
Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year
Present	7.00	8.32	7.00	8.32	7.00	8.32	7.00	8.32	7.00	8.32
2020	7.33	8.83	7.46	9.10	7.59	9.23	7.69	9.39	7.73	9.43
2040	7.69	9.39	8.19	10.09	8.75	10.45	9.31	11.01	9.71	11.41
2060	8.29	9.99	9.40	11.52	10.58	12.28	11.89	13.59	12.86	14.56
2080	8.84	10.54	10.82	13.29	13.00	14.70	15.29	16.99	16.66	18.52
2100	9.35	11.05	12.45	15.36	15.79	17.59	18.28	20.17	20.35	22.27

- Theoretical predicted water elevations accounting for tide, surge, sea level rise, and waves
- Sea level rise can be linearly added to stillwater conditions
- Increased water elevations due to waves were approximated as 0.7 times the wave height

Evaluation

Stillwater Conditions (Surge + Tide)

Stillwater Conditions + Sea Level Rise (SLR) Stillwater Conditions + SLR + Wave Action

Stillwater Conditions	Stillwater Conditions + SLR	Stillwater Conditions + SLR + Wave Action
 FEMA Flood Insurance Rate Maps (FIRM) FEMA Flood Insurance Rate Study (FIS) ✓ Stillwater conditions (surge and tide) does not include waves or sea level rise ✓ Determined elevations for Annual Chance of Flood: 1-Percent 0.2 Percent Looked at NOAA Sea, Lake, and Overland Surges from Hurricanes (SLOSH) Model 	 NOAA/USACE Sea Level Rise Calculator (SLRC) ✓ Theoretical Projections for following conditions: intermediate low intermediate intermediate high high extreme ✓ Flooding vulnerability focused on projected Intermediate High SLR in: 2020 2040 2060 2080 2100 ✓ SLR can be linearly added to stillwater conditions 	 Automated Coastal Engineering Systems (ACES) ✓ Conducted fetch analysis ✓ Assessment of potential wave heights ✓ Winds approximated at 120 mph and 157 mph ✓ Increase water elevations due to waves approximated as 0.7 times the predicted wave height ✓ Runup and overtopping can be ignored in lieu of wave heights

Planning for Resiliency in Coastal Communities

Four step process:

- ✓ 1. Understand the Threat of Flooding
- ✓ 2. Identify Vulnerable Assets and Determine Risk
 - 3. Identify and Evaluate Mitigation Measures
 - 4. Develop Plan to Implement Mitigation Measures

Identify and Evaluate Mitigation Measures

- Emergency planning activities emergency SOP in advance of a storm
- Physical improvements
 - changes in equipment location
 - new capital improvement projects
- May be multiple methods to mitigate a flood hazard
- Develop overall cost-benefit analysis
 - Optimize mitigation options
 - Key to qualifying for most grant funding sources
- Develop priority ranking for mitigation measures
- Include in long-term flood mitigation strategy or Local Mitigation Strategy (LMS)

Develop Plan to Implement Mitigation Measures

- Develop plan to address actions
- Establish a schedule for implementation
- Identify funding mechanisms
- assign responsibility for overseeing the measures
- Review plan periodically
- Coordinate with on-going / real-time maintenance
 - Equipment upgrades and replacements.

Long Term Planning	Understand Threat	Identify Assets/ Determine Risk	Identify Mitigation Measures	Develop Plan to Implement
	Understand Threat of Flooding	ldentify Vulnerable Assets/ Determine Risk	Identify Mitigation Measures	Develop Plan to Implement
	Determine parameters for critical storm event ✓ Stillwater ✓ Sea Level Rise • Scenario • Year ✓ Site impacted by wave action?	What are critical assets? Connection to function of system When are they impacted by critical storm event? What is the level of risk?	Emergency planning activities Physical Improvements ✓ Maintenance vs. Capital Improvement ✓ Life Cycle Analysis Cost Benefit Analysis ✓ Optimize mitigation options ✓ Key to grant funding sources Develop Prioritization Ranking Include in facility long- term mitigation strategy and/or Local Mitigation Strategy (LMS)	Develop plan to address actions Establish a schedule for implementation Identify funding mechanisms Assign responsibility for overseeing the measures Review plan periodically Coordinate with on-going/ real-time maintenance Equipment upgrades and replacements

Planning for Resiliency in Coastal Communities

Funding Opportunities

Federal Programs

Hazard Mitigation Grant Program (HMGP)

- Reduce / eliminate losses and threats associated with future disasters
- Infrastructure upgrades

Funding Opportunities

- Prioritized projects in LMS for submission to FEMA
- Funding appropriated by Congress
- Federal / Local Cost Share of 75% / 25%

Pre-Disaster Mitigation Program (PDM)

- Strengthen national disaster preparedness
- Cost effective measures to reduce risk to individuals and property and reliance on Federal funding from future disasters
- Federal / Local Cost Share of 75% / 25%
- Maximum award is \$4 million for projects and \$150,000 for planning

State and Local Grant Program

Water Management Districts in Florida

- Flood mitigation and stormwater projects consistent with the core mission
- There is a 50% local match requirement for projects
- Evaluate opportunities that benefit multiple cities and / or counties

Funding Opportunities

Funding Opportunities

Federal Programs

- Hazard Mitigation Grant Program (HMGP)
- Pre-Disaster Mitigation Program (PDM)
- Community Development Block Grants (CDBG)

State Programs

- Local Mitigation Strategy (LMS)
- Water Management Districts

Local Government Programs

Cooperative Funding

• Evaluate / coordinate opportunities that benefit multiple cities and / or counties

Questions?

Planning for Resiliency in Coastal Communities

Molly C. Williams, PE Senior Stormwater Engineer Molly.Williams@Stantec.com (239) 248-5962 Matthew Starr, PG Senior Coastal Engineer Matthew.Starr@Stantec.com (239) 315-6208