FSA 2019 Annual Conference

My Green-Ampt is Better Than Your Curve Number: *Physically Based Soil Characterization is Better Than the CN Method for Projecting Infiltration and Runoff*

Key Points

- Why the Need for Physically Based Methods?
 - Experience in Karst Areas
 - Limitations of the CN Method
 - Physically Based Approaches to Runoff Excess

Development of the CN Method (1 of 4)

 Victor Mockus – memories of the development of the SCS Curve Number Method (CN) based on an interview in 1996 when he was 83 years old.

Development of the CN Method (2 of 4)

- SCS Developed the CN method for watersheds less than 400 square miles for evaluating "before" and "after" hydrologic responses.
- Data collection at various U.S. sites began in 1928.
- Method was based on 10 to 20 years of field research that continued through the 1940s.
- Muskgrave's idea to classify soils into Hydrologic Soil Groups to simplify the process (60 -70 soil types at the time).
- S (Potential Storage) was converted to the simpler CN.

Development of the CN Method (3 of 4)

- The relationship between I_a and S was a tough issue that was semi-resolved by using 0.2 ratio for I_a/S . (Mockus said the I_a could be 0.1 or 0.3 but preferred $P - I_a$).
- The hydrologic condition (good, fair, poor) was developed from data developed at Hastings, Nebraska; and Waco, Texas for watersheds of 0.1 acre to 10 square miles.
- Results were based on daily data, because that was the only data available in large volumes.
- Method was <u>not</u> to predict the *rate of infiltration*, but *total infiltration*.

Development of the CN Method (4 of 4)

- Method was to predict average trends, and not response to each unique storm event.
- Mockus arrived at the equation (P-Q)/S = Q/P one evening after dinner. It seemed to fit the data very well and the Antecedent Moisture Condition (AMC) enveloped all the data.
- He said that the CN method simulated Saturation Overflow and not necessarily Hortonian overland flow.

Development of CN Equation

Figure 10-2 ES-1001 graphical solution of the equation $Q = \frac{(P - 0.2S)^2}{P + 0.8S}$ Rainfall (P) $Q = \frac{(P \cdot I_a)^2}{P \cdot I_a + S}$ With $P \ge I_a$; $S \ge I_a + F$; and $F = P - I_a - Q$ Runoff (Q) 7 Curves on this sheet are for the case 1,=0.2S, so that $Q = \frac{(P-0.2S)^2}{P+0.8S}$ 6 Time Initial abstraction Ia Infiltration curve Direct runoff (Q) in inches d' 5 S=(1000/CN) - 10 \$ Ourse mint 20 3 12 50 15 2 30 1 25 20 2 3 6 8 9 10 11 12 0 T 5 Rainfall (P) in inches

The Parameter CN (Curve Number) is a transformation of S

Need for Alternative Method

- Florida watersheds were not considered in the analysis that produced the CN array.
- The SCS methodology excludes time as a variable, and therefore rainfall intensity.
- Limited comparisons elsewhere have suggested significant departures between handbook and datadefined CNs.
- The CN procedure does not work well in karst topography with sandy soils
 - This is because a large portion of the flow is subsurface rather than direct runoff.
- Typically runoff generated from CN procedures do not match rainfall-runoff data for local watersheds, and the 0.2S for initial abstraction (I_a) was not corroborated by linear regression techniques.

Runoff Process and Soil Characterization

Example for Changing to Physical Soil Parameters

Floodplain	Area (acres)	Area (sq. miles)	
FEMA	2108	3.29	
Green-Ampt	2976	4.65	
CN	3832	5.99	

Physically Based Soil Parameters for Rainfall Excess Determination

Soil Data Sources

• IFAS Soil Data

- Institute of Food and Agricultural Sciences
- University of Florida Soils Department
 - Spreadsheet
 - Soil Manuals

• **SSURGO** (Soil Survey Geographic Database)

<u>https://catalog.data.gov/dataset/soil-survey-geographic-ssurgo-database-for-various-soil-survey-areas-in-the-united-states-</u>

Location of IFAS Soil Bores

- Data Period (1965 -1996)
- 58 out of 67 counties
- 1,290 soil profiles
- 2 to 13 soil horizons
- 144 physical and chemical properties
- Soil moisture retention curve

IFAS Characterization Data

SOIL CHARACTERIZATION LABORATORY, IFAS, UNIVERSITY OF FLORIDA

ADAMSVILLE SAND, S51-21-(1-6) AQUIC QUARTZIPSAMMENTS, HYPERTHERMIC, UNCOATED PASCO COUNTY, FLORIDA

_

DATE SAMPLED 04/12/78

PARTICLE SIZE DISTRIBUTION (% < 2 MM)

				SAND	FRAC	TIONS			TOTAL						
			VC	С	М	F	VF	SAND	SILT	CLAY	TEXTURE		PH		TOTAL
	DEPTH HORIZON	LAB	2.0-	1.0-	0.5-	0.25-	0.10-	2.0-	0.05-	<	CLASS	H20	CACL2	KCL	PHOS
NO	(CM)	NO	1.0	0.5	0.25	0.10	0.05	0.05	0.002	0.002		(1:1)	(1:2)	(1:1)	(mpm)
1	0- 8 AP1	3555	0.0	1.9	27.9	48.5	17.6	95.9	3.1	1.0	S	5.0	3.9	3.7	
2	8- 20 AP2	3556	0.1	2.1	27.2	47.7	18.4	95.5	3.5	1.0	S	5.2	4.2	4.0	
3	20- 58 Cl	3557	0.0	2.2	27.1	48.3	18.0	95.6	3.3	1.1	S	5.4	4.6	4.4	
4	58-102 C2	3558	0.0	2.2	25.0	50.0	18.6	95.8	3.2	1.0	FS	5.4	4.7	4.6	
5	102-145 C2	3559	0.1	2.1	25.7	51.3	17.2	96.4	2.9	0.7	LFS	5.3	4.8	4.6	
6	145-203 C3	3560	0.1	2.4	28.3	47.6	17.8	96.2	3.3	0.5	S	5.7	5.1	5.0	

	SAT	WATE	ER CO	TENT											1
	HYDR	1/10	1/3	15				WATER	R CONT	ENT			AVAIL	BULK	ELEC
	COND	BAR	BAR	BAR	3.5CM	20CM	30CM	45CM	60CM	80CM	150CM	200CM	H2O	DENSITY	COND
NO	(CM/HR)	(1	EIGH	(%)				(VOLU	JME %)				(CM/CM)	(G/CC)	(MMHO/CM)
1	14.7	7.4	4.0	2.2	36.8	33.6	32.3	28.2	22.8	14.9	8.4	7.4	0.08	1.55	0.02
2	15.5	5.6	2.7	1.0	32.1	27.9	26.0	20.4	16.1	11.4	6.4	5.6	0.07	1.59	0.01
.3	28.9	5.5	2.5	0.7	36.5	35.6	34.4	27.1	19.8	11.6	5.8	5.0	0.07	1.56	0.01
4	24.3	5.0	2.0	0.6	33.4	32.7	31.8	23.1	17.8	11.1	5.4	4.6	0.07	1.61	0.01
5	23.4	4.8	2.3	0.4	33.5	32.1	31.7	27.3	21.4	11.5	4.8	4.0	0.07	1.60	0.01
6	21.2	3.7	1.2	0.7	31.4	30.6	30.3	24.4	17.3	9.1	3.1	2.5	0.05	1.59	0.18
				I 1	•										-

SSURGO

- Data retrieval and georeferenced through Data View
- 954 MUKEYs within SWFWMD
- Water table depth
- Hydraulic conductivity
- Other properties

		Total	Residual	Effective	Bubbling (ψ1	pressure b)	Pore size d	listribution	Water retained at -0.33 bar	Water retained at -15 bar	Saturated Hydraulic Conductivity‡
Texture class	Sample size	(0). cm ³ /cm ³	(θ_r) cm ³ /cm ³	$(\theta_c),$ cm ³ /cm ³	Arithmetic, cm	Geometric,† cm	Arithmetic	Geometric†	tension, cm ³ /cm ³	tension, cm ³ /cm ³	(K _s) cm/h
Sand	762	0.437**	0,020 (0.001 0.039)	0.417 (0.354-0.480)	15.98 (0.24-31.72)	7.26 (1.36-38.74)	0.694 (0.298-1.090)	0.592 (0.334-1.051)	0.091 (0.018-0.164)	0.033 (0.007-0.059)	21.00
Loamy sand	338	0.437 (0.368-0.506)	0.035 (0.003 0.067)	0,401 (0.329-0,473)	20.58 (0.0 45.20)	8.69 (1.80-41.85)	0.553 (0.234–0.872)	0.474 (0.271-0.827)	0,125 (0.060 - 0,190)	0.055 (0.019-0.091)	6.11
Sandy loam	666	0.453 (0.351-0.555)	0.041 (0.0-0.106)	0,412 (0.283-0.541)	30.20 (0.0-64.01)	14.66 (3.45-62.24)	0.378 (0.140-0.6 1 6)	0.322 (0.186-0.558)	0.207 (0.126-0.288)	0.095 (0.031-0.159)	2.59
Loam	383	0.463 (0.375-0.551)	0.027 (0.0 -0.074)	0.434 (0.334 0.534)	40.12 (0.0 100.3)	11.15 (1.63-76.40)	0.252 (0.086-0.418)	0.220 (0.137-0.355)	0.270 (0.195-0.345)	0.117 (0.069 - 0.165)	1.32
Silt loam	1206	0.501 (0.420 -0.582)	0.015 (0.0-0.058)	0.486 (0.394 - 0.578)	50.87 (0.0-109.4)	20.76 (3.58-120.4)	0.234 (0.105-0.363)	0.211 (0.136-0.326)	0.330 (0.258-0.402)	0.133 (0.078 - 0.188)	0.68
Sandy clay loam	498	0.398 (0.332-0.464)	0.068	0.330 (0.235 0.425)	59.41 (0.0 123.4)	28,08 (5,57-141.5)	0.319 (0.079-0.559)	0.250 (0.125-0.502)	0.255 (0.186-0.324)	0.148 (0.085-0.211)	0.43
Clay loam	366	0.464 (0.409 0.519)	0.075 (0.0-0.174)	0.390 (0.279-0.501)	56.43 (0.0-124.3)	25.89 (5.80-115.7)	0.242 (0.070-0.414)	0,194 (0,100-0,377)	0.318 (0.250-0.386)	0.197 (0.115-0.279)	0.23
Silty clay loam	689	0.471 (0.418 0.524)	0,040 (0.0 0.118)	0.432 (0.347-0.517)	70.33 (0.0-143.9)	32.56 (6.68–158.7)	0,177 (0,039-0.315)	0.151 (0.090-0.253)	0.366 (0.304 0.428)	0.208 (0.138-0.278)	0,15
Sandy clay	45	0.430 (0.370 0.490)	0.109 (0.0 0.205)	0.321 (0.207-0.435)	79.48 (0.0 179.1)	29.17 (4.96–171.6)	0.223 (0.048 - 0.398)	0.168 (0.078-0.364)	0.339 (0.245-0.433	0.239 (0.162-0.316)	0,12
Silty clay	127	0.479 (0.425 0.533)	0.056 (0.0-0.136)	0,423 (0.334-0.512)	76.54 (0.0 159.6)	34.19 (7.04 166.2)	0,150 (0.040-0.260)	0.127 (0.074-0.219)	0.387 (0.332 -0.442)	0.250 (0.193 - 0.307)	0.09
Clay	291	0.475 (0.427 0.523)	0.090 (0.0 0.195)	0,385 (0.269 0.501)	85.60 (0.0 176.1)	37.30 (7.43 187.2)	0,165 (0,037-0,293)	0.131 (0.068-0.253)	0.396 (0.326 0.466)	0.272 (0.208 0.336)	0.06

4

TABLE 2. HYDROLOGIC SOIL PROPERTIES CLASSIFIED BY SOIL TEXTURE

* First line is the mean value

Second line is + one standard deviation about the mean

† Antilog of the log mean

‡ Obtained from Fig. 2

General Runoff Concepts Characterization

And Soil

Runoff Process and Soil Characterization

Learning Points

- Gain an understanding of soil properties regarding moisture, hydraulic conductivity, and tensions (capillarity); and how they are obtained.
- Present data sources for soil properties used along with SWFWMD utilities to account for changes in potential soil water storage.
- How the empirical CN and the physical approaches compare using an example.

<u>Natural Resources</u> <u>Conservation Services</u>

 The state of Florida has the largest total acreage of Aquods (wet, sandy soils with an organic-stained subsoil layer) on flatwood landforms in the nation. Myakka (pronounced My-yakah), a Native American word for Big Waters, is a native soil and exclusive to Florida. The most extensive soil in the state, it occurs on more than 1¹/₂ million acres. On May 22, 1989, Governor Bob Martinez signed Senate bill number 524 into law, making Myakka Florida's Official State Soil.

Spodosol Myakka sand A horizon: Surface layer containing organic matter. E horizon: Leached horizon between the A and **B** horizons. **B** horizon: Zone of accumulation of material leached from the A and B horizons. **C** horizon: Layer not affected by soil forming processes.

Source of Graphic:

Soil and Water Science Department, University of Florida

Capillarity (Matric Potential)

Matric Potential and Soil Texture

The tension or suction created by small capillary tubes (small soil pores) is greater that soil pores) is greater that that created by large tubes (large soil pores). At any given metric potential coarse soils hold less water than fine-textured soils.

Fig. 1. Conceptual model for capillary rise and associated soil-water characteristic curve

By: N. Lu and W.J. Likos

Outline

- Soil concepts and properties capillarity
- Moisture and hydraulic relations to tension
- Runoff concepts (infiltration and storage)
- Data sources for soil parameters
- Soil Properties for Florida Soils
- Soil Retention (S_e) Curves
- Brooks-Corey and van Genuchten Equations
- Comparison of CN, and Physically Parameterized Soils for projecting runoff.

Soil Storage Examples

Soil Suction Parameters for Moisture Curves

SOIL CHARACTERIZATION LABORATORY, IFAS, UNIVERSITY OF FLORIDA

BASINGER FINE SAND, S28-17-(1-7) SPODIC PSAMMAQUENTS, SILICEOUS, HYPERTHERMIC HIGHLANDS COUNTY, FLORIDA

SAT	WATE	R CONT	TENT								
HYDR	1/10	1/3	15	-			WATER	CONTE	NT		
COND	BAR	BAR	BAR	3.5CM	20CM	30CM	45CM	60CM	80CM	150CM	200CM
CM/HR)	(W	EIGHT	%)				- (VOLU	ME %)-			
24.6	7.2	4.6	2.3	42.6	39.1	35.4	25.2	17.3	12.6	8.6	7.8
23.7	4.5	2.5	0.9	38.5	37.0	36.2	27.7	15.2	9.4	5.5	4.9
20.4	5.1	2.6	0.3	33.9	33.1	33.0	24.1	15.8	10.7	6.0	5.2
12.1	6.4	3.6	0.4	35.2	34.4	34.4	27.4	19.5	13.3	8.2	7.2
6.4	7.1	4.3	0.5	35.4	33.8	33.7	33.5	27.7	15.7	9.7	8.6
9.3	6.0	3.7	0.7	34.8	34.4	34.3	34.1	28.7	13.4	8.1	7.3
0.1	16.7	14.9	4.8	32.7	32.1	31.9	31.1	30.4	29.9	28.8	28.2

Soil Moisture Comparison - Candler

Soil Moisture Comparison - Adamsville

Hydraulic Conductivity Limited Soil (Clays)

SOIL CHARACTERIZATION LABORATORY, IFAS, UNIVERSITY OF FLORIDA

MICANOPY LOAMY FINE SAND, S1-94-(1-7) AQUIC PALEUDALFS, FINE, MIXED, HYPERTHERMIC ALACHUA COUNTY, FLORIDA

DATE SAMPLED 11/08/78

				P/	ARTICI	LE SIZ	ZE DIST	TRIBUT:	ION (%	M)							
					SAND	FRACT	CIONS			TOTAL							
				VC	С	М	F	VF	SAND	SILT	CLAY	TEXTURE		PH		TOTAL	
	DEPTH H	HORIZON	LAB	2.0-	1.0-	0.5-	0.25-	0.10-	2.0-	0.05-	<	CLASS	H2O	CACL2	KCL	PHOS	
NO	(CM)		NO	1.0	0.5	0.25	0.10	0.05	0.05	0.002	0.002		(1:1)	(1:2)	(1:1)	(mgg)	
																	1
1	0- 15 A	АP	3901	0.0	1.8	21.8	50.2	13.0	86.8	5.1	8.1	LFS	5.2	5.0	4.8		
2	15- 30 E	B21T	3902	0.2	3.0	19.2	40.2	10.4	73.0	7.0	20.0	SCL	4.8	4.3	4.1		
3	30- 46 B	B22TG	3903	0.0	1.4	14.6	27.4	7.2	50.6	7.3	42.1	SC	4.5	3.9	3.7		
4	46- 96 B	B23TG	3904	0.0	1.4	13.4	29.2	7.0	51.0	5.3	43.7	SC	4.4	3.8	3.7		
5	96-140 B	B24TG	3905	0.0	1.8	18.2	33.2	6.8	60.0	4.5	35.5	SC	4.5	3.8	3.6		
6	140-196 B	33G	3906	0.0	1.8	19.0	34.0	6.6	61.4	5.2	33.4	SCL	4.6	3.8	3.6		
7	196-216 C	3	3907	0.0	2.0	17.7	33.0	7.1	59.8	6.5	33.7	SCL	4.8	3.9	3.5		

	SAT	WAT	ER CON	TENT											
	HYDR	1/10	1/3	15				WATER	CONTI	ENT			AVAIL	BULK	ELEC
	COND	BAR	BAR	BAR	3.5CM	20CM	30CM	45CM	60CM	80CM	150CM	200CM	H2O	DENSITY	COND
NO	(CM/HR)	(WEIGHT	%)				(VOLU	ME %)-				(CM/CM)	(G/CC)	(MMHO/CM)
1	42.2	14.2	8.6	5.0	43.4	39.8	36.3	33.1	28.6	23.7	16.2	14.3	0.14	1.50	0.05
2	3.2	16.2	11.3	5.2	41.6	36.3	35.2	31.8	29.2	26.6	21.0	19.3	0.17	1.51	0.03
3	0.3	29.2	26.9	20.3	47.6	46.7	45.0	43.5	42.5	41.8	40.3	39.5	0.13	1.41	0.02
4	0.8	25.4	23.7	18.5	45.4	43.5	41.5	40.7	40.2	39.5	38.2	37.6	0.11	1.54	0.01
5	0.1	21.5	20.3	16.7	38.4	37.4	37.3	37.2	37.1	36.7	36.6	35.3	0.08	1.69	0.01
6	0.1	22.2	20.3	14.9	39.0	38.1	38.0	37.8	37.6	37.3	36.1	35.6	0.12	1.68	0.01
7	0.2	18.5	17.1	13.8	35.6	34.7	34.5	34.3	33.5	32.9	31.9	31.3	0.08	1.76	0.01

SoilName	Mukey	Avg_Int_Mc	Avg_Sat_Mc	ST in Inche	Layer	D2WT	TP_Stor	LayThck
POMPANO FINE	321046	0.478	0.478	0.000	1	0		13
POMPANO FINE	321046	0.390	0.390	0.000	2	0		17
POM PANO FINE	321046	0.355	0.355	0.000	3	0		44
POMPANO FINE	321046	0.359	0.359	0.000	4	0		81
POM PANO FINE	321046	0.383	0.383	0.000	5	0	0.000	48
POMPANO FINE	321046	0.451	0.478	0.148	1	30		13
POMPANO FINE	321046	0.369	0.390	0.141	2	30		17
POMPANO FINE	321046	0.355	0.355	0.000	3	30		44
POMPANO FINE	321046	0.359	0.359	0.000	4	30		81
POM PANO FINE	321046	0.383	0.383	0.000	5	30	0.290	48
POMPANO FINE	321046	0.386	0.478	0.507	1	60		13
POMPANO FINE	321046	0.288	0.390	0.680	2	60		17
POMPANO FINE	321046	0.348	0.355	0.123	3	60		44
POMPANO FINE	321046	0.359	0.359	0.000	4	60		81
POM PANO FINE	321046	0.383	0.383	0.000	5	60	1.311	48
POMPANO FINE	321046	0.312	0.478	0.914	1	91		13
POM PANO FINE	321046	0.152	0.390	1.594	2	91		17
POMPANO FINE	321046	0.269	0.355	1.496	3	91		44
POMPANO FINE	321046	0.358	0.359	0.037	4	91		81
POMPANO FINE	321046	0.383	0.383	0.000	5	91	4.042	48
POMPANO FINE	321046	0.287	0.478	1.053	1	121		13
POMPANO FINE	321046	0.110	0.390	1.874	2	121		17
POMPANO FINE	321046	0.149	0.355	3.567	3	121		44
POMPANO FINE	321046	0.349	0.359	0.314	4	121		81
POM PANO FINE	321046	0.383	0.383	0.000	5	121	6.808	48

Variation in Potential Soil Storage Based on Depth to WT

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT

Soil Data Retrieving and Processing Program

A Customized Tool Using Visual Basic Application

Background

- Change from ICPR3 to ICPR4
- Layered soil data needs
- Mechanism for consistent and up-to-date soil parameterization
- Determination of initial moisture content based on initial water table depth
- Use soil moisture retention curve to decide soil storage

Auto	Save (or or)	85). Q.	÷							SoilDataRe	etrieval&Proce	essing_v8 - Ex	cel							Lei	Yang 📧		٥	×
File	Home Ir	nsert	Page L	ayout Fe	ormulas	Data F	Review	View De	eveloper	Help	Ø Tell n	ne what you	want to do									d Sh	are	□ Comme	ents
Ê	X Cut			- 10	o → A ⁺	A" =	≡ ≡ ∛	≥r- gb,V	Nrap Text		General						E		∑ Autos	sum - As	20				
Paste	Format Pair	iter	B I	<u>u</u> -	<u>A</u>	2 3	23 E	三王國	Vierge & C	lenter ~	\$ - %	9 30 30	Formatting	 Format as Table = 	Cell Styles -	Insert *	Delete	Format +	🔗 Clear	- Sort Filte	& Find & r = Select =				
	Clipboard	E.		Font		16		Alignment		5	Numb	ber 👘		Styles			Cells			Editing					^
	A B		С	D	E	F	G	Н	1	J	K	L	М	N	0	Р		Q	R	S	Т	U	V	W	*
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35		Re	ad Me	To retrieve, If you only If you desir Simply close The last an Acronym: N	Soil Field /process so need to ret re to replace e the progr d most imp MUKEY = M	Input Pai Soil I d Capacit User R uil data, se trieve data e default i am and re ortant thi ap Unit K	rameters MUKEY(s) ty Option Reference elect appro a for one s initial wate estart whe ing is DO N ey	ICPR4 C Already Use one What se what se oil, conside er table dep n you don't OT alter th	Green-Al green-Al e-tenth l oil data s oil data s fons on th er providin oth, you of t know ho e GUI and	mpt tab con bar for f should I should I can specij ow to dea d other h	itaining a li iield capac retrieve? drop-down Y directly, or fy water tab al with certa iidden tabs.	ist of MUK ity estimat lists and the therwise loa le depth to in issues, or You are free	EYs ion ion in click on Ex d MUKEYs in associated so feel free com a to delete al	ecute. The a file or cro bils in colun tact the pro ny tabs gen	texts nea eate a tai on B in tho ogram de erated di	r each dr b to hold e loaded veloper. uring pro	rop-dov MUKE file or pocessing	wn list on Ys (Colum tab.	the left se	lf-explain t may be ma	the settings fore conveni	s. ent and ave	oid erro	175.	
	ReadM	1e t	_GreenA	mptSoilDa	ta GUI	mk S	SoilInfo	SoilTab	+							÷ •									
1] 🖪 –		++	100%

Southwest Florida Water Management District

Soil Parameters	Source or Method
Soil Zone	SSURGO
Initial Water Table Depth	NRCS or user specified
Kv Saturated	IFAS or SSURGO
MC Saturated	Calculated as function of bulk density
MC Residual	Regression equation
MC Initial	Calculated based on soil moisture retention curve
MC Field	Water content at 1/3 or 1/10 bar
MC Wilting	Water content at 15 bar
Pore Size Index	Regression equation
Bubble Pressure	Regression equation
Layer Thickness	IFAS

Water Table Information from SSURGO

Depth to Water Table based on Potentiometric Surface

	1	A	В	С	
	1	321046	1.5	321046_A	
	2	321046	1	321046_B	
	3	321046	6	321046_C	
	4	321047	0	321047_P1	
Column A Mukey	5	321047	1	321047_P2	
Column D. Initial water table donth	6	321047	5	321047_P3	
Column B Initial water table depth	7	321048		321048	
Column C User customized mukey	8	321049		321049	
	9	321050		321050	
	10	321051		321051	
	11	321052		321052	
	12	321053		321053	
	13	321054		321054	

Soil Input Information Regarding Depth to Water Table

- Physically based rainfall excess approaches better represent soil water dynamics in Florida sandy soils.
- Availability of the soil data retrieval and processing program expedite modeling process.
- Mechanism to stay current when source soil data updates happen.
- Users need professional judgment for reasonable soil parameters.

Ending Remarks

Harry Downing, PE, Sr. Water Resources Engineer, Applied Sciences Consulting, Inc.

hdowning@appliedfl.com

Lei Yang, PhD, PE, Chief Professional Engineer, SWFWMD

Lei.Yang@watermatters.org

Q & A

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT

Left blank on purpose the following slides just for potential questions

Vertical Layered Soil Data Generated by Soil Tool

AutoSave 💿 🔚 🍤 - 🖓 - =					t_	VerticalLayeredS	oilData - Exce	el					Lei Yang 🖾	- 0
File Home Insert Page Layout Form	nulas Data	a Review	v View	Developer	Help 🔎	Fell me what yo	ou want to de	c					含 Share	□ Com
A	В	C	D	E	F	G	Н	1	J	K	Ĺ	M	N	0
1 Soil Name	Soil Zone	WT Initial	Layer Order	Kv Saturated	MC Saturated	MC Residual	MC Initial	MC Field	MC Wilting	Pore Size Index	Bubble Pressure	Layer Thickness	# of Cells Per Layer	
2 POMPANO FINE SAND, DEPRESSIONAL	321046_A	0.295	1	47.09	0.478	0.044	0.476	0.287	0.055	0.56	0.99	0.43	2	
3 POMPANO FINE SAND, DEPRESSIONAL	321046_A	0.295	2	18.62	0.390	0.012	0.390	0.097	0.024	0.60	1.68	0.56	2	
4 POMPANO FINE SAND, DEPRESSIONAL	321046_A	0.295	3	22.01	0.355	0.004	0.355	0.064	0.008	0.63	2.21	1.44	5	
5 POMPANO FINE SAND, DEPRESSIONAL	321046_A	0.295	4	9.84	0.359	0.007	0.359	0.101	0.013	0.59	2.08	2.66	5	
6 POMPANO FINE SAND, DEPRESSIONAL	321046_A	0.295	5	35.43	0.383	0.008	0.383	0.144	0.016	0.61	1.72	1.57	5	
7 POMPANO FINE SAND, DEPRESSIONAL	321046_B	1	1	47.09	0.478	0.044	0.450	0.287	0.055	0.56	0.99	0.43	2	
8 POMPANO FINE SAND, DEPRESSIONAL	321046_B	1	2	18.62	0.390	0.012	0.369	0.097	0.024	0.60	1.68	0.56	2	
9 POMPANO FINE SAND, DEPRESSIONAL	321046_B	1	3	22.01	0.355	0.004	0.347	0.064	0.008	0.63	2.21	1.44	5	
10 POMPANO FINE SAND, DEPRESSIONAL	321046_B	1	4	9.84	0.359	0.007	0.359	0.101	0.013	0.59	2.08	2.66	5	
11 POMPANO FINE SAND, DEPRESSIONAL	321046_B	1	5	35.43	0.383	0.008	0.383	0.144	0.016	0.61	1.72	1.57	5	
12 POMPANO FINE SAND, DEPRESSIONAL	321046_C	11	1	47.09	0.478	0.044	0.287	0.287	0.055	0.56	0.99	0.43	2	
13 POMPANO FINE SAND, DEPRESSIONAL	321046_C	11	2	18.62	0.390	0.012	0.097	0.097	0.024	0.60	1.68	0.56	2	
14 POMPANO FINE SAND, DEPRESSIONAL	321046_C	11	3	22.01	0.355	0.004	0.064	0.064	0.008	0.63	2.21	1.44	5	
15 POMPANO FINE SAND, DEPRESSIONAL	321046_C	11	4	9.84	0.359	0.007	0.101	0.101	0.013	0.59	2.08	2.66	5	
16 POMPANO FINE SAND, DEPRESSIONAL	321046_C	11	5	35.43	0.383	0.008	0.194	0.144	0.016	0.61	1.72	5.91	6	
17 TAVARES FINE SAND, 0 TO 5 PERCENT SLOPES	321047_P1	0.5	1	15.91	0.397	0.008	0.364	0.115	0.015	0.59	1.60	0.26	1	
18 TAVARES FINE SAND, 0 TO 5 PERCENT SLOPES	321047_P1	0.5	2	18.11	0.410	0.005	0.401	0.092	0.010	0.59	1.52	1.57	5	
19 TAVARES FINE SAND, 0 TO 5 PERCENT SLOPES	321047_P1	0.5	3	19.13	0.393	0.005	0.393	0.078	0.009	0.60	1.67	1.57	5	
20 TAVARES FINE SAND, 0 TO 5 PERCENT SLOPES	321047_P1	0.5	4	14.33	0.370	0.003	0.370	0.064	0.006	0.62	1.92	1.84	5	
21 TAVARES FINE SAND, 0 TO 5 PERCENT SLOPES	321047_P1	0.5	5	16.93	0.363	0.001	0.363	0.055	0.002	0.62	2.35	1.41	5	
22 TAVARES FINE SAND, 0 TO 5 PERCENT SLOPES	321047_P2	1	1	15.91	0.397	0.008	0.320	0.115	0.015	0.59	1.60	0.26	1	
23 TAVARES FINE SAND, 0 TO 5 PERCENT SLOPES	321047_P2	1	2	18.11	0.410	0.005	0.397	0.092	0.010	0.59	1.52	1.57	5	
24 TAVARES FINE SAND, 0 TO 5 PERCENT SLOPES	321047_P2	1	3	19.13	0.393	0.005	0.393	0.078	0.009	0.60	1.67	1.57	5	
25 TAVARES FINE SAND, 0 TO 5 PERCENT SLOPES	321047_P2	1	4	14.33	0.370	0.003	0.370	0.064	0.006	0.62	1.92	1.84	5	
26 TAVARES FINE SAND, 0 TO 5 PERCENT SLOPES	321047_P2	1	5	16.93	0.363	0.001	0.363	0.055	0.002	0.62	2.35	1.41	5	
27 TAVARES FINE SAND, 0 TO 5 PERCENT SLOPES	321047_P3	10	1	15.91	0.397	0.008	0.115	0.115	0.015	0.59	1.60	0.26	1	
28 TAVARES FINE SAND, 0 TO 5 PERCENT SLOPES	321047_P3	10	2	18.11	0.410	0.005	0.092	0.092	0.010	0.59	1.52	1.57	5	
29 TAVARES FINE SAND, 0 TO 5 PERCENT SLOPES	321047_P3	10	3	19.13	0.393	0.005	0.078	0.078	0.009	0.60	1.67	1.57	5	
30 TAVARES FINE SAND, 0 TO 5 PERCENT SLOPES	321047_P3	10	4	14.33	0.370	0.003	0.064	0.064	0.006	0.62	1.92	1.84	5	
31 TAVARES FINE SAND, 0 TO 5 PERCENT SLOPES	321047_P3	10	5	16.93	0.363	0.001	0.174	0.055	0.002	0.62	2.35	4.75	5	
32 IMMOKALEE FINE SAND	321048	0.82021	1	22.80	0.523	0.039	0.487	0.187	0.097	0.55	0.94	0.33	1	
33 IMMOKALEE FINE SAND	321048	0.82021	2	23.82	0.398	0.004	0.394	0.055	0.008	0.60	1.66	1.02	4	
34 IMMOKALEE FINE SAND	321048	0.82021	3	10.42	0.358	0.018	0.358	0.153	0.035	0.63	2.20	1.41	5	
35 IMMOKALEE FINE SAND	321048	0.82021	4	13.97	0.359	0.010	0.359	0.110	0.020	0.58	2.11	0.33	1	
36 IMMOKALEE FINE SAND	321048	0.82021	5	11.61	0.366	0.011	0.366	0.119	0.021	0.61	2.07	0.49	2	
t_VerticalLayeredSoilData)								: •					
												I	▦	

Green Ampt Soil Data Generated by Soil Tool

AutoSave 💽 😥 - 🖓 - 🖓 - =		SoilDataR	etrieval&Processing_	v8 - Excel			Le	ei Yang 📧	1.	
File Home Insert Page Layout Formulas Data Review View Develope	er Help	₽ Tell i	me what you want	to do				🖻 Share 🛛 🖓 Comments		
A B C D E	F	G	H I		JK	L M	N O	Р	Q	R 🔺
1 SoilName SoilZone Kv Saturated MC Saturated MC Residual M	MC Initial M	IC Field MC	Wilting Pore Size	e Index Bubble	Pressure Allow Recharg	ge WT Initial		1 1		
2 POMPANO FINE SAND, DEPRESSIC 321046_A 21.65 0.374 0.009	0.366	0.115	0.016	0.60	1.92 No	1.500				
3 POMPANO FINE SAND, DEPRESSIC 321046_B 21.65 0.374 0.009	0.369	0.115	0.016	0.60	1.92 No	1.000				
4 POMPANO FINE SAND, DEPRESSIC321046_C 27.09 0.378 0.009	0.153	0.126	0.016	0.61	1.84 No	11.000				
5 TAVARES FINE SAND, 0 TO 5 PERC 321047_P1 16.97 0.384 0.004	0.381	0.074	0.007	0.61	1.85 No	0.500				
6 TAVARES FINE SAND, 0 TO 5 PERC 321047_P2 16.97 0.384 0.004	0.378	0.074	0.007	0.61	1.85 No	1.000				
7 TAVARES FINE SAND, 0 TO 5 PERC 321047_P3 16.96 0.377 0.003	0.124	0.068	0.005	0.61	2.01 No	10.000				
8 IMMOKALEE FINE SAND 321048 19.39 0.379 0.013	0.377	0.104	0.026	0.61	1.92 No	0.820				
9 OKEELANTA MUCK 321049 11.53 0.449 0.027	0.449	0.217	0.046	0.54	1.26 No	0.000				
10 LAKE FINE SAND, 0 TO 5 PERCENT 321050 18.24 0.407 0.011	0.248	0.087	0.023	0.57	1.45 No	4.757				
11 LAKE FINE SAND, 5 TO 8 PERCENT 321051 18.24 0.407 0.011	0.248	0.087	0.023	0.57	1.45 No	4.757				
12 ARREDONDO FINE SAND, 0 TO 5 PI 321052 7.27 0.398 0.035	0.381	0.171	0.063	0.45	1.85 No	1.936				
13 ARREDONDO FINE SAND, 5 TO 8 PI 321053 7.27 0.398 0.035	0.381	0.171	0.063	0.45	1.85 No	1.936				
14 KENDRICK FINE SAND, 0 TO 5 PER 321054 7.00 0.384 0.051	0.366	0.187	0.067	0.45	2.16 No	2.001				
15 KENDRICK FINE SAND, 5 TO 8 PER 321055 3.66 0.382 0.048	0.333	0.267	0.140	0.25	5.72 No	2.854				
16 ADAMSVILLE FINE SAND 321056 15.00 0.374 0.003	0.365	0.082	0.006	0.62	1.91 No	1.608				
17 PITS 321057 17.95 0.379 0.004	0.379	0.066	0.008	0.61	1.82 No	0.000				
18 QUARTZIPSAMENTS, 0 TO 5 PERCE 321058 17.95 0.379 0.004	0.378	0.066	0.008	0.61	1.82 No	0.525				
19 WEEKIWACHEE-DURBIN MUCKS 321059 11.53 0.449 0.027	0.449	0.217	0.046	0.54	1.26 No	0.230				
20 OKEELANTA-LAUDERHILL-TERRA C 321060 35.10 0.745 0.041	0.745	0.592	0.093	0.54	1.01 No	0.000				
21 LOCHLOOSA FINE SAND, 0 TO 5 PE 321061 3.74 0.412 0.055	0.359	0.291	0.161	0.32	9.01 No	3.084				
22										
23 Notes										
24 Parameter values are weighted by layer thickness based on Vertical Layer soil parameter value	es.									
25 Ky Saturated is in units of ft/day.										
26 MC Saturated, MC Residual, MC Initial, MC Field and MC Wilting are volumetric moisture conte	ents.									
27 Brooks-Corev Pore Size Index has no unit.										
28 Bubble Pressure is in units of inches.										
29 Allow Recharge set in default value. Users can adjust as needed.						-•				
30 WT Initial or Initial Water Table Depth in units of feet, adopted by default from the Sept 2018 N	RCS soil da	ta unless u	sers specified othe	rwise.						
31										
32 Disclaimer										
33 By accessing soil data and information contained in this spreadsheet, you hereby agree to acc	cept the follo	owina terms	and conditions:							
34 The Southwest Florida Water Management District (or the DISTRICT) shall not be held liable fo	r improper o	or incorrect	use of the soil data	a. processes or	materials described and	/or contained herein. T	hese data are not lega	documents :	and are no	ot intended t
35 The user hereby recognizes that the soil data processes and materials are dynamic and may	change over	r time witho	ut notice. However	the DISTRICT	makes no commitment to	update the soil data p	rocesses or materials	contained her	rein.	1
36 Use of any soil data and related information is voluntary and reliance on it should only be under	rtaken after	an indeper	dent review of its a	ccuracy reliabi	lity completeness usefu	Iness and timeliness	Such independent revi	ew is solely th	e respons	sibility of use
37									- /	,
38										
39										
	_									
Keadine t_GreenAmptSoilData GUI mk Soilinfo Soillab					1 4) b
								B 11		+ 100%