

Analysis of Storm Sewer Resiliency in light of proposed Tottenville Shoreline Improvements

Tottenville, Staten Island, NY

Presented by: Jordan Corby, PE, PMP Molly Williams, PE

Agenda

- Safety Moment
- Project Background
- Scope of Work
- Methodology
- Existing Conditions
- Proposed Conditions
- Results & Recommendations

Stop & Talk: Aggressive Driving

Health, Safety, Security, & Environment

+

Aggressive driving is defined as the operation of a motor vehicle in an unsafe and hostile manner. The picture below further demonstrates aggressive behavior. The following tips are suggested to reduce your chances of becoming involved in an aggressive driving or road rage incident:

- Observe common courtesy and consciously try to avoid actions which can provoke other drivers.
- Keep your emotions in check and think about the consequences of your behavior before you react.
- Be Aware of actions which can provoke aggression.
- Avoid behaviors which are likely to provoke aggression:
 - Eye contact
 - Aggressive tailgating
 - Aggressive horn use
 - Aggressive headlight use
- · Follow the rules of the road.
- Remaining calm and courteous behind the wheel lowers your risk of an unpleasant encounter – with another driver and with law enforcement.
- Don't drive when you are upset, angry or overtired.
- · Adjust your attitude.
- · Give the other driver the benefit of the doubt.
- · Avoid all conflict if possible.

 Self-control is crucial in managing stress and aggression.

- Reduce Your Stress
 - Learn to spot the warning signs of stress, and try to avoid situations which are likely to cause stress.
- · If you are making a long trip:
 - Plan your route and have a map in your vehicle.
 - Take breaks to stretch and walk around.
 - Eat light snacks as opposed to heavy meals.
- Road congestion is a major contributing factor to traffic disputes:
 - · Consider altering your schedule.
 - Allow plenty of time to get where you are going.
 - Improve the comfort of your vehicle.
 - Listen to music that reduces your anxiety.
 - · Concentrate on being relaxed.
 - · Take a deep breath.

This link provides more information on avoiding aggressive driving: https://exchange.aaa.com/wp-content/uploads/2013/06/Road-Rage-Brochure.pdf

If you have questions, please contact your supervisor, Office Safety and Environment Coordinator (OSEC), or local HSSE representative

HSSE Stop & Talk are written for educational purposes and are not intended to replace safe work practices or procedures. ver. June 2019

Tottenville Shoreline Protection Project

Project Background

- Reduce Wave Action
- Reduce Coastal Erosion
- Enhance Ecosystems
- Enhance Shoreline Access

Tottenville Shoreline Protection Project

Project

OVERALL CONCEPT | THE LAYERED APPROACH

Scope of Work

Physical Processes

- Rainfall
- Storm Sewer System •
- Pipe Obstructions •
- Tailwater •
- **Coastal Forcing** •
- Seepage/Infiltration •

Methodology

Methodology

ICPR4 – Interconnected Channel and Pond Routing Model Software

ESRI Arc Hydro Tools

Rainfall runoff – Curve Number method, NRCS TR-55

Storm System Hydraulics – nodal network

Coastal Forcing – Tailwater conditions for tide range from Sandy Hook Station and SLR (30").

Seepage/Infiltration Processes

Modeling Assumptions

Methodology

- Design Storm: 5-year, 1-hour duration (1.7")
- Existing Conditions surface terrain
- Hydrologic conditions for all cover types: "Good Condition"
- Storm System Hydraulics with ICPR4
- Groundwater seepage through the proposed TSPP structure
- Worst-case scenario (High Tide meets peak runoff discharge)
- Multiple Scenarios:
 - 30" Sea level rise for all scenarios
 - With and without Storm Surge
 - 10 year storm surge (no overtopping)
 - 100 year storm surge (overtopping)
 - With and without tide gates at existing DEP outfalls
 - With and without obstructed storm sewers

Methodology

Data - Vertical Datums

Record Drawings and GIS Data of Storm system in Richmond (Staten Island) Datum.

Surface DEM, survey and tidal data in NAVD88 datum.

Richmond to NAVD88 Conversion rate:

Richmond + *2.092 ft* = NAVD88

ICPR map layers

ICPR map layers

Methodology

- Land use maps impervious data set to correlate with map layer
- NRCS soil data CN data set assigned by soil / land use combinations

Basin Delineation - Initial

Methodology

ArcHydro tools used to delineate basins initially

Approximately 100 basins

Basin Delineation - Refined

Methodology

432 Basins 526 ac. Average: 1.2 ac. Largest: 16.4 ac. Smallest 0.1 ac.

Catch Basins

Methodology

• Standard Grate for Drop

Structures

Non-standard Grates include open

throat inlets

Verified with Field Observations, Google Maps and/or Bing Maps Surface viewer

Existing Conditions Model

Surface Terrain with Nodal Network

Existing Conditions Model

Aerial with Storm Sewer System

Existing Conditions Model

- 432 Basins
- 753 nodes
- 1431 links

Existing Conditions Model Input

- DEM
- NRCS Soils
- Land Use Maps
- NYC DEP sewer asset GDB
- As-Built Plans
- Basin Delineation
- Survey Data
- Tailwater scenarios

Existing Conditions - Calibration

- Calibration
 - Flow Meters
 - Rainfall Gauges
 - Tailwater
 - Adjustments to model parameters

Existing Conditions - Calibration

- Calibration
 - Flow Meters
 - Rainfall Gauges
 - Tailwater
 - Adjustments to model parameters

Existing Conditions – Calibration Results

4.00

5.00

6.00

7.00

Proposed Conditions

Model Methodology

Earthen Berm

Dune System

Eco-Revetment

Raised Pathway

Model Methodology

Proposed Conditions

PROPOSED SECTION A-A'

PROPOSED SECTION A-A'

Existing Conditions Flow path

Proposed Conditions Model

TYPE

----> CHANNEL

PIPE

- WEIR

BASIN

Proposed Conditions

Analysis

Simulations / Comparisons

Table of Hydrologic Scenarios							
Case	Storm Sewer	Shoreline Protection	Tide Gates	High Tide tailwater peak = 6.26 ft	10yr Storm Surge peak =10.6 ft	100yr Storm Surge peak = 15.4 ft	
1	Existing	Existing	No	Yes	No	No	
2		Temp		No	Yes	No	
3	1	Berm		No	No	Yes	
4			Yes	Yes	No	No	
5				No	Yes	No	
6				No	No	Yes	
7		Proposed	No	Yes	No	No	
8		Berm		No	Yes	No	
9				No	No	Yes	
10			Yes	Yes	No	No	
11				No	Yes	No	
12				No	No	Yes	
13	Maintained/	Existing	No	Yes	No	No	
14	Improved	Temp		No	Yes	No	
15		Denn		No	No	Yes	
16			Yes	Yes	No	No	
17				No	Yes	No	
18				No	No	Yes	
19		Proposed	No	Yes	No	No	
20		Berm		No	Yes	No	
21				No	No	Yes	
22			Yes	Yes	No	No	
23				No	Yes	No	
24				No	No	Yes	

Existing Storm Sewer System								
Existing Shoreline Conditions vs. Proposed Shoreline Improvements								
High Tide	6.26 ft	Case01 v. Case07						
10 Year Storm Surge	10.6 ft	Case02 v. Case08						
100 Year Storm Surge	15.4 ft	Case03 v. Case09						
Existing Shoreline Conditions Tide Gate Analysis								
High Tide	6.26 ft	Case01 v. Case04						
10 Year Storm Surge	10.6 ft	Case02 v. Case05						
100 Year Storm Surge	15.4 ft	Case03 v. Case06						
Proposed Shoreline Conditions Tide Gate Analysis								
High Tide	6.26 ft	Case07 v. Case10						
10 Year Storm Surge	10.6 ft	Case08 v. Case11						
100 Year Storm Surge	15.4 ft	Case09 v. Case12						
Maintained/Improved Storm Sewer System								
Existing Shoreline Conditions vs. Proposed Shoreline Improvements								
High Tide	6.26 ft	Case13 v. Case19						
10 Year Storm Surge	10.6 ft	Case14 v. Case20						
100 Year Storm Surge	15.4 ft	Case15 v. Case21						
Existing Shoreline Conditions Tide Gate Analysis								
High Tide	6.26 ft	Case13 v. Case16						
10 Year Storm Surge	10.6 ft	Case14 v. Case17						
100 Year Storm Surge	15.4 ft	Case15 v. Case18						
Proposed Shoreline Conditions Tide Gate Analysis								
High Tide	6.26 ft	Case19 v. Case22						
10 Year Storm Surge	10.6 ft	Case20 v. Case23						
100 Year Storm Surge	15.4 ft	Case21 v. Case24						

Results & Recommendations

Results & Recommendations

Stormwater Improvements

- Storage
- Shallow Swales
- Grate Inlets
- Pipes
- Tide Gate Valves

Results & Recommendations

Results pending final reviews

60% Plan Submittal

Additional Work

